
MULTIPLE PARTICLE FILTERING
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ABSTRACT

Particle ltering is a sequential signal processing methodology that
uses discrete random measures composed of particles and weights
to approximate probability distributions of interest. The quality of
approximation depends on many factors including the number of
particles used for ltering and the way new particles are generated by
the lter. The problem of good approximation becomes increasingly
challenging as the dimension of the state space increases. In this
paper, we address a possible solution for improved particle ltering
in high dimensional cases by using a set of particle lters operating
on partitioned subspaces of the complete state space. We provide
simulation results that show the feasibility of the proposed approach.

Index Terms— recursive estimation, ltering, dynamic systems

1. INTRODUCTION

Particle ltering has become an important methodology for
sequential signal processing. This can be attested by the amount
of attention it has received in recent years not only by theoreticians,
but by practitioners too. In the past few years there have been several
special journal issues and books where particle ltering has been the
main or one of the main topics of interest [1], [2], [3], [4], [5].

Particle ltering provides approximate solutions to nding
ltering, predictive, and smoothing densities of interest. The

approximation is based on discrete representation of these densities
by samples from the space of unknowns and weights associated
to the samples. The method is based on the Bayes’ theory and is
composed of three steps: (1) generation of particles (samples from
the space of unknowns), (2) computation of the particle weights, and
(3) resampling. The last step does not have to be implemented at
every time instant but it is essential for accurate performance of the
lter.

In many problems of sequential signal processing the dimension
of the state space may be very large. That usually requires a very
large number of particles for satisfactory performance of the particle
lter. If we keep in mind that particle ltering is a computationally

expensive methodology and that its computational complexity grows
with the number of particles, addressing high dimensional problems
with particle ltering becomes of great importance.

Here we propose a particle ltering approach for dealing with
high dimensional state spaces. We assume that our interest is to nd
the marginal posterior densities of the subvectors of the state vector
xt, and we denote them by xk,t, k = 1, 2, · · · ,K. This set of
subvectors form a partition of xt. In other words, we assume that
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there is no need to obtain the joint posterior of the complete state.
Therefore, we decompose the state space into separate subspaces
and we run different particle lters in each of the subspaces. We will
refer to this method as multiple particle ltering.

For example, if we have a problem where the state space is 15-
dimensional, we could run a particle lter where the state vector has
a dimension of 15. With the proposed method, we rst partition
the state space, say, into three state subspaces of dimension ve
each, and run three separate particle lters, each of them tracking
the state in one of the state subspaces. The choice of the subspaces
is obviously not unique and has to be made judiciously. Our method
will have some important advantages over the standard particle
ltering approach. The back side of the coin is that with multiple

particle ltering, we give up some of the information that the 15-
dimensional particle lter could provide.

The paper is organized as follows. First we formulate the
problem in Section 2. In Section 3, we explain the proposed
method and discuss some of its advantages and disadvantages. The
simulation results that demonstrate the method’s performance are
presented in Section 4. The paper is concluded with nal thoughts
given in Section 5.

2. THE PROBLEM

Suppose that we have a model of a system described by the set of
equations given by

xt = gx(xt−1,ut) (1)

yt = gy(xt,wt) (2)

where the time index t is discrete and t = 1, 2, ..., and the symbols
have the following meaning:

• xt ∈ Rdx is a system state at time t of dimension dx,

• ut ∈ Rdu is a state noise vector at time t of dimension du,

• gx : R
dx ×Rdu → R

dx is a state transition function that may
be nonlinear,

• yt ∈ R
dy is a vector of observations collected at time t,

where the observations are a function of the system state,

• gy : R
dx × R

dv → R
dy is a measurement function of the

state, and it, too, may be nonlinear, and

• wt ∈ R
dw is the observation noise vector at time t of

dimension dw.

Note that the functions gx(·) and gy(·) may vary with time. This
does not change anything in our work, and therefore we assume that
the forms of the functions with time remain unchanged and that these
forms are known.
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We assume that the dimension of the state vector dx is greater
than one, i.e., dx > 1. We represent the state vector by subvectors
(with possibly different sizes), i.e., x� = [x�1 x

�
2 · · ·x�K ]. Therefore

the state equation (1) can be written as

⎡
⎢⎢⎢⎣
x1,t
x2,t

...
xK,t

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
g1(x1,t−1,x2,t−1, · · · ,xK,t−1,ut)
g2(x1,t−1,x2,t−1, · · · ,xK,t−1,ut)

...
gK(x1,t−1,x2,t−1, · · · ,xK,t−1,ut)

⎤
⎥⎥⎥⎦ (3)

where the functions gk(·) are not necessarily all identical.
Our interest is to nd the marginal posterior densities of the state

vectors xk,t, k = 1, 2, · · · ,K. This can be done, for example,
by tracking the complete state vector and then marginalizing the
complete joint posterior accordingly.

When we apply particle ltering for the stated task, we basically
form a random measure, which at time instant t − 1 is given by

χt−1 =
{
x
(m)
t−1, w

(m)
t−1

}M

m=1
(4)

with particles x(m)
t−1 and their associated weights w(m)

t−1 , and update
it when the new measurement yt becomes available. This is done
by rst proposing particles for xt by drawing them from a proposal
function π(xt) and then computing their weights w(m)

t by

w
(m)
t ∝ w

(m)
t−1

p(yt|x(m)
t )p(x

(m)
t )

π(x
(m)
t )

. (5)

If the dimension of the state-space, dx, is large, for accurate
sequential estimation of the evolving state this would most likely
require a very large number of particles. The problem is to nd
alternative schemes that would alleviate the explosion of necessary
number of particles with the increase of state dimension.

3. MULTIPLE PARTICLE FILTERS

One approach to avoid the need for too many particles for accurate
state estimation is to partition the state-space into subspaces and in
each subspace run a separate particle lter. Here we describe in
detail one way of accomplishing this and discuss some alternative.

3.1. Proposed method

Following the idea of using multiple particle lters, we assign to
each state vector xk,t a particle lter. Each subspace of the state-

space has a random measure χk,t =
{
x
(m)
k,t , w

(m)
k,t

}Mk

m=1
, where

Mk is the number of particles used by the k−th particle lter.
Clearly, the particle propagation and resampling step of the lter
can be implemented in the usual way and the main question for the
implementation is the update of the particle weights of the k−th
measure from w

(m)
k,t−1 to w

(m)
k,t . The reason why this is a nontrivial

question can be seen from (5), where an important factor in the
update is the likelihood function p(yt|x(m)

t ). The update of w(m)
k,t−1

should be theoretically carried out either by

w
(m)
k,t ∝ w

(m)
k,t−1

p(yt|x(m)
k,t ,x−k,t)p(x

(m)
k,t |x(m)

k,t−1,x−k,t−1)

πk(x
(m)
k,t |x(m)

k,t−1,x−k,t−1,yt)
(6)

where x−k,t is the state vector that does not contain the elements
of xk,t and πk(·) is the proposal function of the k−th lter, or we
could use

w
(m)
k,t ∝ w

(m)
k,t−1

p(yt|x(m)
k,t )p(x

(m)
k,t |x(m)

k,t−1)

πk(x
(m)
k,t |x(m)

k,t−1,yt)
. (7)

The former update requires knowledge of x−k,t which is not
available, and the latter, the ability to marginalize, which is
technically intractable. Here we propose that the update is
implemented by

w
(m)
k,t ∝ w

(m)
k,t−1

p(yt|x(m)
k,t , x̃−k,t)p(x

(m)
k,t |x(m)

k,t−1, x̂−k,t−1)

πk(x
(m)
k,t |x(m)

k,t−1, x̂−k,t−1,yt)
(8)

where x̂−k,t−1 is the estimated value of all the states at time t except
of xk,t, i.e.,

x̂�−k,t = [x̂
�
1,tx̂

�
2,t · · · x̂�k−1,tx̂�k+1,t · · · x̂�K,t]

and similarly, x̃−k,t is the predicted value of all the states except of
xk,t. The predictions can be obtained in one of many ways. For
example, we can use the prediction de ned by

x̃j,t =

Mj∑
m=1

w
(m)
j,t−1x

(m)
j,t (9)

for j = 1, 2, · · · ,K. This implies that at every time instant all
the particle lters obtain the predictions of their states and provide
this information to the remaining particle lters. The particle lters
use the exchanged information for computing the weights of their
particles and eventually for generation of new particles.

3.2. Alternatives

Alternative methods would be based similarly on exchanging
predictions of the states obtained with different methods or by using
Rao-Blackwellization (RB). Recall that RB is a variance reduction
technique [6], where states that are considered nuisance states are
integrated out analytically. As a result, the dimensionality of the
space of interest is decreased and the applied estimation methods
become more accurate.

The idea of RB has already been explored in the context of
particle ltering, for example in [7] and [8]. Suppose that the state-
space is partitioned into two subspaces where the state vector from
one of the subspaces follows a conditionally linear Gaussian model
given the other state vector. Then, one can use Kalman ltering for
tracking the conditionally linear state vector and particle ltering for
tracking the conditioning state vector.

In general, however, our system may not contain conditionally
linear states. What can one do in that case? One option is to linearize
the system over the space that we want to marginalize. This would
then lead to a combination of extended Kalman ltering (EKF) and
RB. The method could be applied as follows: for the k−th subspace
we linearize the system so that x1,t, x2,t, · · · , xk−1,t, xk+1,t,
· · ·, xK,t are conditionally linear given xk,t, and they are estimated
within that subspace using EKF. Each particle lter will then have
its own set of linearized states which will be marginalized by using
Kalman ltering.

III ­ 1182



900 800 700 600 500 400 300 200 100 0 100
500

0

500

1000

1500

2000

2500

x (m)

y 
(m

)

Trajectory

True trajectory
SPF
MPF 4
MPF 2

0 100 200 300 400 500 600
0

2

4

6

8

10

12

t (s)

v 
(m

/s
)

Velocity

True vrajectory
SPF
MPF 4
MPF 2

Fig. 1. A target trajectory and its estimates by various PFs (SPF withM = 800, MPF-2 with M = 400, and MPF-4 withM = 200 particles).

3.3. Discussion

In terms of implementation, the proposed method is expected to
require less particles to achieve the same accuracy like particle lters
operating on the complete state space. When comparisons are made
among the particle lters one can argue that it is important that the
computation time of the lters is the same. If one uses one CPU for
each particle lter, the number of particles of the multiple particle
lter and standard particle lter should be the same per particle lter.

Clearly, in that case the total number of particles of the multiple
particle lter will beK times bigger than that of the standard particle
lter, but the multiple particle lter will require better computational

resources. On the other hand, if the particle ltering is executed
on one sequential machine, the number of particles of each of the
particle lters of the multiple particle ltering scheme will be K
times less than that of the standard particle lter.

An important issue in the implementation of the multiple particle
lter is the partitioning of the state space. The performance of the
lter may strongly depend on that.

One advantage of the multiple particle lter is that it may allow
for different number of particles for the various subspaces. This
feature should be used in particular when the dimensions of the
subspaces are different.

The multiple particle lter will most likely have degraded
performance in cases when the posteriors of the marginalized states
are multimodal. When this arises, the multiple particle lter should
not be used.

4. SIMULATION RESULTS

A standard application of particle ltering is target tracking. In our
simulations, we considered the problem of tracking a vehicle moving
along a two-dimensional space. The tracking was modeled by the
following state-space system:

xt = Axt−1 +But state equation (10)

yt = gy(xt) +wt observation equation (11)

where xt is the state vector in the two-dimensional plane, A and B
are state-transition and noise-transition matrices, respectively, yt is
a vector of observations, and ut andwt are the state and observation
noise processes. The state xt consisted of the target location at
time instant t, lt = [lx,t ly,t]

� and its velocity vt = [vx,t vy,t]
�.

The units of position and velocity were meter and meter/second,
respectively.

In the simulations, we used four static sensors, all located at
the same spot, r = [−10, 000 20, 000]�. The rst sensor was

measuring the signal strength, the second, the angle of signal arrival,
the third, absolute velocity of the target, and the fourth, the direction
of motion. The functions describing the sensor measurements were
as follows:

gy,1(xt) = 10 log10

(
P0

‖r − lt‖α

)
(12)

gy,2(xt) = ∠(lt, r) (13)

gy,3(xt) = ‖vt‖ (14)

gy,4(xt) = ∠(vt) (15)

where ‖ · ‖ denotes norm of vector, ∠(·) is the relative angle of the
vector, P0 is the power of the signal measured at unit distance, and
α is the attenuation coef cient of the fading channel.

We tested the tracking of a target with constant velocity. The
transition matrix was given by

A4×4 =
[
I2 TsI2
02 I2

]
(16)

where Ts was sampling period, I2 and 02 were the identity and
zero matrices, respectively, and B = I4. The state noise process
ut was modeled as independent Gaussian, with different variances
for position and velocity, i.e.,

u1,t, u2,t ∼ N (0, 1), u3,t, u4,t ∼ N (0, 0.1).
The observation noise process wt was also Gaussian and had
different variances for each component,

w1,t ∼ N (0, 10−4), w2,t ∼ N (0, 10−4)

w3,t ∼ N (0, 10−5), w4,t ∼ N (0, 10−4).
We tracked the target for 10 minutes where the measurements

were sampled with Ts = 1 second. The lters were applied with
different number of particles as will be explained further below.
In implementing the multiple particle lter (MPF) we partitioned
the state space according to xt = [x1,t x2,t]

� where x1,t =
[lx,t ly,t]

� and x2,t = [ vx,t vy,t]
� and we refer to this particle

lter as MPF-2. So MPF-2 was composed of two particle lters
running in parallel. Then we also partitioned the state space as
xt = [x1,t x2,t x3,t x4,t]

� = [lx,t ly,t vx,t vy,t]�, and we refer to
this particle lter as MPF-4. Thus, in this case we ran simultaneously
four different particle lters.

We computed the mean-square error (MSE) of the target’s
location and velocity during the time of tracking. The MSE was

III ­ 1183



0 100 200 300 400 500 600
10

1

10
0

10
1

10
2

10
3

t

M
S

E
 o

f L
oc

at
io

n

SPF
MPF 4
MPF 2

0 100 200 300 400 500 600
10

4

10
3

10
2

10
1

10
0

t

M
S

E
 o

f V
el

oc
ity

SPF
MPF 4
MPF 2

Fig. 2. MSE’s of location and velocity by various PFs (SPF with M = 800, MPF-2 with M = 400, and MPF-4 with M = 200 particles).
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Fig. 3. MSE’s of location and velocity as functions of number of
used particles for the SPF, MPF-2 and MPF-4.

computed from 50 independent realizations. In all the realizations,
the target started moving in the proximity of the origin of the
coordinate system. For comparison purposes, we also implemented
the standard particle lter (SPF).

In Fig. 1 on the left, we can see one realization of a trajectory
and its estimates obtained by SPF with M = 800, MPF-2 with
M = 400, and MPF-4 with M = 200 particles and in Fig. 1
on the right, the corresponding track of the velocity of the target
and its estimates. Clearly, all the methods were able to estimate the
trajectory and velocity of the target with good accuracy.

In Figure 2, we can see the MSEs of the location (left) and
velocity (right) of the target obtained by the different methods. We
observe that the trajectory was best estimated by MPF-2 and the

worst by SPF. The ranking in performance according to the MSEs
of velocity is less clear. However, it is obvious that the performance
of all the methods was approximately the same.

Finally in Figure 3 we present the average MSEs per sample
for estimated location (top) and velocity (bottom), respectively, as
functions of used number of particles. The MSEs were computed
for the last 60 seconds of tracking. We see from the gures that
MPF outperformed the SPF.

5. CONCLUSIONS

An important challenge in particle ltering is the need for very
large number of particles when the dimensions of the states are
even moderately large. One approach to combat this problem is
to partition the state space into subspaces and run separate particle
lters for these subspaces. In the paper we presented one possible

implementation of this idea. The computer simulations showed that
the proposed method outperformed the standard particle lter.
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