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ABSTRACT

In Bayesian ltering, the model may allow analytical marginal-
ization over a subset, θ1,t, of the parameters. The Marginal-
ized (Rao-Blackwellized) Particle Filter (MPF) exploits this,
by requiring stochastic sampling only in the remaining pa-
rameters, θ2,t, with the potential for major computational and
convergence speed-ups. The marginalized ltering distribu-
tion in θ1,t is expressed as a mixture of n analytical compo-
nents, each conditioned on one of the n particle trajectories
in θ2,t; i.e. suf cient statistics must be stored and updated for
each particle trajectory. In this paper, the Variational Bayes
(VB) approximation is used as a one-step approximation to
extract necessary moments from the n particles in a principled
manner, yielding a single-component marginalized ltering
distribution. This formalizes and extends a recently reported
certainty equivalence approach to accelerating MPFs. The
comparative performance of the full and accelerated MPFs
is explored via a scalar nonlinear ltering example.

Keywords: Bayesian ltering, Variational Bayes, marginal-
ized particle ltering, nonlinear ltering.

1. BAYESIAN FILTERING

Consider a sequence of (observed) data, Dt = [d1, . . . , dt],
and an associated sequence of (unobserved) parameters,Θt =
[θ1, . . . , θt]. We assume that θt is a state of the model:

dt ∼ f (dt|θt) , θt ∼ f (θt|θt−1) , (1)

We are concerned with Bayesian Filtering (BF), i.e. recur-
sive evaluation of the ltering distribution, f (θt|Dt), using
Bayes’ rule. BF is analytically tractable if (i) marginaliza-
tion over θt−1 is analytically tractable, and (ii) the resulting
marginal distribution, f (θt|Dt), is functionally invariant, ∀t.
(i) and (ii) are satis ed for only a limited class of models.

1.1. Particle Filtering (PF)

Particle ltering (PF) [1] refers to a range of sequential Monte
Carlo (MC) techniques for Bayesian ltering in intractable
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contexts, generating a sequence of empirical approximations:

f (Θt|Dt) ≈ 1
n

n∑
i=1

δ
(
Θt −Θ(i)

t

)
. (2)

Here, Θ(i)
t are i.i.d. samples from f (Θt|Dt), and δ(·) de-

notes the Dirac δ-function. In the (typical) case when sam-
pling from the exact posterior is impossible, we can, instead,
draw samples,Θ(i)

t ∼ q (Θt|Dt), from a chosen proposal dis-
tribution (importance function), q (·), as follows:

f (Θt|Dt) =
f (Θt|Dt)
q (Θt|D)

q (Θt|Dt) (3)

≈ f (Θt|Dt)
q (Θt|Dt)

1
n

n∑
i=1

δ
(
Θt −Θ(i)

t

)
. (4)

Using the sifting property of δ(·), (4) can be written in the
form of a weighted empirical distribution:

f (Θt|Dt) ≈
n∑

i=1

w
(i)
t δ

(
Θt −Θ(i)

t

)
, (5)

w
(i)
t ∝

f
(
Θ(i)

t |Dt

)
q
(
Θ(i)

t |Dt

) . (6)

Under this importance sampling procedure, the true posterior,
f(·), need only be evaluated point-wise. Furthermore, nor-
malizing constants of f(·) and q(·) are not required, since (5)
can be normalized trivially via the constant c =

∑n
i=1 w

(i)
t .

The challenge for on-line algorithms is therefore to gen-
erate recursively the samples (particles), {θ(i)

t }, and the im-
portance weights (6), {w(i)

t }. From (1) and (6),

w
(i)
t ∝

f
(
dt|θ(i)

t

)
f
(
θ
(i)
t |θ(i)

t−1

)
q
(
θ
(i)
t |Θ(i)

t−1, Dt

) w
(i)
t−1, (7)

where, now, θ(i)
t are drawn from the denominator of (7), typi-

cally chosen as f (θt|θt−1) (1). Implementation issues—such
as the appropriate choice of the importance function, resam-
pling, etc.—are addressed, for example, in [1].
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1.2. Marginalized Particle Filtering (MPF)

The general importance sampling framework of the previous
section is widely applicable, but sampling is required from the
joint state space. This may be computationally prohibitive in
high dimensions, and large numbers of particles are required
in such cases to satisfy convergence criteria [1]. Consider fac-
torization f (Θt|Dt) = f (Θ1,t|Θ2,t, Dt) f (Θ2,t|Dt), with
replacement of the nal term by a weighted empirical distri-
bution of the type in (5). Following (3)–(6):

f (Θt|Dt) ≈
n∑

i=1

w
(i)
t f

(
Θ1,t|Θ(i)

2,t, Dt

)
δ
(
Θ2,t −Θ(i)

2,t

)
,

(8)
where sampling is now required only in the reduced dimen-

sions of θ2,t. Here, w
(i)
t ∝ f

(
Θ

(i)
2,t|Dt

)
q
(
Θ

(i)
2,t|Dt

) , with recursive form

w
(i)
t ∝

f
(
dt|θ(i)

2,t

)
f
(
θ
(i)
2,t|θ(i)

2,t−1

)
q
(
θ2,t|Θ(i)

2,t−1, Dt

) w
(i)
t−1. (9)

Hence, the model (1) must admit a partition, θt = [θ1,t, θ2,t],
for which θ1,t can be integrated analytically. This is also the
requirement for f

(
Θ1,t|Θ(i)

2,t, Dt

)
, i.e. the conditional lter-

ing distribution, to be available analytically in (8). Only a
limited class of models—such as Gaussian state-space mod-
els [2]—satisfy this requirement. The MPF scheme (8)–(9) is
sometimes called the Rao-Blackwellized particle lter [1].

1.3. Accelerating theMPF via Certainty Equivalence (CE)

The mixture in (8) requires n parallel conditional Bayesian
ltering updates; i.e. suf cient statistics are required for each
particle trajectory, Θ(i)

2,t. This is computationally inef cient if
the particle trajectories are similar. A simple Certainty Equiv-
alence (CE) approach to reducing the computational cost of
the MPF was reported in [3]. The idea was to replace the n
components in (8) by a single component,

f (Θt|Dt) ≈ f
(
Θ1,t|Θ̂2,t, Dt

)
δ
(
Θ2,t − Θ̂2,t

)
, (10)

where Θ̂2,t =
∑n

i=1 w
(i)
t Θ(i)

2,t, and the w
(i)
t were evaluated

using a modi ed version of (9). The idea is closely related to
the mean- eld approach to distributional approximation [4],
but considerable extensions are possible via full application
of such approximations. We will now emphasize the Varia-
tional Bayes (VB) approximation [5], and nd that this leads
to a principled approach to the problem of concentrating the
n components in (8) into a single component in (10).

2. THE VARIATIONAL BAYES APPROXIMATION

The VB approximation is an optimal deterministic distribu-
tional approximation, as shown by the following theorem.

Theorem 1 Let f (θ|D) be the posterior distribution of mul-
tivariate parameter, θ = [θ′1, θ

′
2]
′, and f̆ (θ|D) be an approx-

imate distribution with conditional independence restriction:

f̆ (θ|D) = f̆ (θ1, θ2|D) = f̆ (θ1|D) f̆ (θ2|D) . (11)

Any minimum of the Kullback-Leibler divergence from f̆ (·)
to f (·) is achieved when f̆ (·) = f̃ (·), where

f̃ (θi|D) ∝ exp
(
Ef̃(θ/i|D) [ln (f (θ, D))]

)
, i = 1, 2. (12)

Here θ/i denotes the complement of θi in θ. We will refer to
f̃ (θi|D) (12) as the VB-marginals.

Theorem 1 provides a powerful tool for approximation of
joint pdfs of separable form [5]:

ln f (θ1, θ2, D) = g (θ1, D)′ h (θ2, D) . (13)

Here, g (θ1, D) and h (θ2, D) are nite-dimensional vectors.
Using (13) in (12),

f̃ (θ1|D) ∝ exp
(
g (θ1, D)′ ̂h (θ2, D)

)
. (14)

ĥ(·) = Ef̃(θ2|D) [h] are the VB-moments of θ2 (ditto for θ1),
giving an Iterative VB (IVB) [5] moment-swapping algorithm.
In nonlinear cases of g and/or h, the VB-marginals (12)

may have nonstandard form, with VB-moments (14) dif cult
to evaluate. It may be necessary to replace such non-standard
VB-marginals—e.g. f̃ (θ2|D)—with a tractable alternative.
In the next two Sections, we present two such modi cations.

2.1. The Functionally Constrained VB Approximation

Here, an extra step is introduced within each IVB cycle; i.e.
f̃ (θ2|D) is projected into a tractable alternative, f̂ (θ2|D).
The moments of this distribution are fed back via (14) to gen-
erate f̃ (θ1|D). The EM algorithm is a case in point. Here,

f̂ (θ2|D) ≡ δ
(
θ2 − θ̂2

)
,

with θ̂2 = arg maxθ2 f̃ (θ2|D), and f̃ (θ2|D) is the VB-marginal
given by (12). It follows from (14) that

f̃ (θ1|D) = f
(
θ1|θ̂2, D

)
.

2.2. The Restricted VB Approximation

In this case, we replace f̆ (θ2|D) in (11) by a tractable xed
distribution, f (θ2|D). Using Theorem 1:

f̃ (θ1|D) ∝ exp
(
Ef(θ2|D) [ln (f (θ, D))]

)
. (15)

Therefore, only a single substitution of moments from f(·)
is required to generate the approximation, avoiding IVB cy-
cles. Under assumption (13), the moments which need to be
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substituted are ĥ(·) = Ef(θ2|D) [h (·)]. It is interesting to
note that a number of popular distributional approximations
are special cases of (15): (i) certainty equivalence, where
f ≡ δ(θ2 − θ̂2) for some chosen point estimate, θ̂2, in which
case f̃(θ1|D) = f(θ1|θ̂2, D) in (15); and (ii) the Quasi-
Bayes (QB) approximation, where f ≡ f (θ2|D), the exact
marginal, if is is available. If h(·) in (13) is linear, then (i)
and (ii) are equivalent under assignment θ̂2 = Ef(θ2|D) [θ2]
[5].

3. VARIATIONAL BAYESIAN FILTERING (VBF)

We now develop a one-step VB approximation of the Bayesian
ltering distribution, f (θt|Dt) (Section 1). We impose sepa-
rability into θt = [θ1,t, θ2,t], such that (Theorem 1)

f̃ (θt−1|Dt−1) = f̃(θ1,t−1|Dt−1) f̃(θ2,t−1|Dt−1) , (16)

requiring the following marginal to be available analytically:

f (θ1,t, θ2,t|Dt) ∝∫
f(dt|θt) f(θt|θt−1) f̃(θ1,t−1|Dt−1) dθ1,t−1. (17)

The VB approximation of (17) is then, once again, obtained
via Theorem 1, completing a step of VB Filtering (VBF) [5].
For conciseness, we have suppressed the conditioning of the
distributions in (16) and (17) on the trajectory, Θ2,t.
As before, the necessary VB moments of both VB-marg-

inals on the righthand-side of (16) must be available, ∀t. As-
suming, for example, that the VB-moments of f̃ (θ2,t|Dt) are
not available analytically, we next explore the modi ed VB
approximations of Sections 2.1 and 2.2 in this VBF context.

3.1. VB Particle Filtering

Using the functionally-constrained VB approximation of Sec-
tion 2.1, we project f̃ (θ2,t|Dt) into an empirical distribution:

f̂ (θ2,t|Dt) =
n∑

i=1

w
(i)
t δ

(
θ2,t − θ

(i)
2,t

)
, (18)

w
(i)
t ∝

f̃
(
θ
(i)
2,t|Dt

)
q
(
θ
(i)
2,t|θ(i)

2,t−1, Dt

) . (19)

The necessary VB-moments ̂h (θ2,t, Dt) needed for evalua-
tion of f̃ (θ1,t|Dt) (14) are now always available:

̂h (θ2,t, Dt) =
n∑

i=1

w
(i)
t h

(
θ
(i)
2,t, Dt

)
. (20)

The implied IVB algorithm (Section 2) is as follows:

Algorithm 3.1 (VB Particle Filtering)
0. Draw samples θ

(i)
2,t from q

(
θ2,t|θ(i)

2,t−1, Dt

)
.

1. Evaluate moments ̂g (θ1,t, Dt) needed in numerator of
(19).
2. Evaluate weights w

(i)
t via (19).

3. Evaluate moments ̂h (θ2,t, Dt) via (20), and generate f̃ (θ1,t|Dt)
via (14).
4. If not converged go to step 1.

3.2. Quasi-Bayes (QB) Particle Filtering

Given (16), and assuming that (1) factorizes as

f (θt|θt−1) = f (θ1,t|θ1,t−1) f (θ2,t|θ2,t−1) , (21)

then the unnormalized analytical marginal, f (θ2,t|Dt), of (17)
can always be evaluated pointwise. Hence, we can replace

(19) by w
(i)
t ∝ f

(
θ
(i)
2,t|Dt

)
q
(

θ
(i)
2,t|θ(i)

2,t−1,Dt

) , avoiding IVB iterations.

Remark 1 Under these VB scenarios, the n particles have
been concentrated into f̃ (θ1|Dt) via (20), eliminating the
need for n parallel Bayesian ltering steps. (10), as proposed
in [3], is a special case of QB particle tering having assumed
a linear h(·) (13). QB particle ltering has the advantage of
allowing higher-order moments (20) of the empirical distri-
bution (18) to be exploited.

4. SCALAR NONLINEAR FILTERING EXAMPLE

Consider the following model [3]:

f (xt|xt−1) = N (Axt−1, Q) ,

f (Ct|Ct−1) = N (arctan (Ct−1) , P ) , (22)
f (dt|xt, Ct) = N (C ′txt, R) .

Essentially, this is a standard linear-Gaussian model with un-
known non-stationary Ct, for which a nonlinear evolution
model is de ned. Here, integration over xt−1 is possible us-
ing standard Kalman Filtering (KF) theory, yielding the fol-
lowing conditional posterior of xt:

f (xt|Ct, Dt) = N (
μt, Ω−1

t

)
, (23)

Ωt =
(
Q + AΩ−1

t−1A
′)−1

+ C ′tR
−1Ct,

μt = Ω−1
t

[(
Q + AΩ−1

t−1A
′)−1

Aμt−1 + C ′tR
−1dt

]
.

This is written in terms of precision matrix Ωt for analytical
convenience. Exact integration over Ct−1 is intractable. A
MPF (Section 1.2) is obtained using (8)–(9) with assignments
θ1,t = xt and θ2,t = Ct.
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4.1. VB Particle Filtering

The required distribution (17), i.e. f (xt, Ct|Ct−1, Dt), is ob-
tained by multiplying (23) by (22). The VB-marginals are

f̃ (xt|Ct−1, Dt) = N
(
μ̃t, Ω̃−1

t

)
, (24)

f̃ (Ct|Ct−1, Dt) ∝ N
(
C̃t, Σt

)
|Ωt(Ct)|

1
2 , (25)

with shaping parameters

Ω̃t =
(
Q + AΩ̃−1

t−1A
′
)−1

+ E
[
C ′tR

−1Ct

]
, (26)

μ̃t = Ω̃−1
t

[(
Q + AΩ̃−1

t−1A
′
)−1

Aμ̃t−1 + Ĉt

′
R−1dt

]
,

Σt =
(
R−1x̂′txt + P−1

)−1

,

C̃t = Σt

(
R−1dtx̂t

′ + P−1 arctan(Ct−1)
)
.

Here, Ĉt, and E
[
C ′tR

−1Ct

]
are rst and second moments of

the empirical distribution, f̂ (Ct|Dt) (18), and x̂t and x̂′txt

are moments of the VB-marginal (24).

Remark 2 Under QB particle ltering, the weights are eval-
uated via (23) rather than via (25). In [3], (10) has the same
form as (24) with E

[
C ′tR

−1Ct

]
replaced by Ĉt

′
R−1Ĉt.

4.2. Simulation study

A system (22) with two-dimensional state, xt, and scalar out-
put, dt, is simulated with parameters A = 1, Q = 1, P = 1,
R = 1. The aim is to illustrate the effect of propagation of
higher moments (20) within the VB particle ltering schemes.
We use the same proposal, q (Ct|Ct−1) = f(Ct|Ct−1) (22),
and the same re-sampling scheme for all tested methods. Per-
formance is assessed via two measures, the rst being the
Mean Square Error (MSE) of the state estimate,

MSE =
1
T

T∑
t=1

‖xt − x̂t‖2 .

T is the number of samples in the simulation, xt the simu-
lated value of the state, and x̂t the mean value of the posterior
distribution f̃ (xt|Ct−1, Dt) (24) under each approximation.
The second measure is the log of the marginal likelihood:

log f (Dt) =
T∑

t=1

log f (dt|Dt−1) ,

f (dt|Dt−1) =
∫

f (dt|θt) f̃ (θt|Dt−1) dθt.

We compared (i) the Marginalized Particle Filter (MPF), (ii)
the Certainty Equivalence (CE) approach of [3], and (iii) QB
particle ltering which substitutes 2nd-order moments (26)
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Fig. 1. Performance of approximate ltering in a MC study.

(QB). A Monte Carlo (MC) study, with T = 1000 and 1000
realizations per setting, was undertaken (Fig. 1). The CE
method appears to provide the best posterior approximation
(i.e. highest marginal likelihood values). The 2nd-order mo-
ments of the QB particle lter result in a atter QB posterior
distribution (24), i.e. a lower marginal likelihood. However,
this wider covariance may permit better coverage of the pa-
rameter space, yielding the best MSE performance.

5. CONCLUSION

Ideas from mean- eld theory have been used to accelerate
marginalized particle lters, via principled substitution of mo-
ments from the weighted empirical distribution. The VB par-
ticle lter requires iterative re-evaluation of weights before
moment calculations, while QB particle ltering is non-iterat-
ive. They have in commonwith certainty equivalence approach-
es—which they justify—the advantage of just one Bayes lter
update per time-step, but the added advantage of communicat-
ing higher-order moments from the empirical distribution, im-
proving accuracy. The framework is formal and there is scope
for issues such as (i) the class of models amenable to VB par-
ticle ltering, and (ii) other mean- eld approximations.
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