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ABSTRACT 
 
The S transform is a powerful linear time-frequency 
representation, and it is especially useful for filter in the 
time-frequency spectrum. To improve the time resolution of 
the filter applications, Schimmel and Gallart have proposed 
a new method for inverse S transform. This new method 
performs much better than the original in time localization 
with time-frequency filters. However, there exists some 
distortion of the inverse transformed signal that it will be 
enhanced in the positive but suppressed in the negative 
frequency part. In this paper we will demonstrate the 
distortion and propose a modified method to derive the 
correct inverse transformed signal and provide satisfactory 
time localization in filtering. 
 

Index Terms— time-frequency representation, filter, S 
transform

1. INTRODUCTION 
 
Time-frequency representation is a powerful tool for signal 
analysis, since it can investigate the signal varying in time 
and frequency domain simultaneously. A lot of methods 
have been proposed, and among them two of the most well-
known may be Wigner distribution and Short Time Fourier 
Transform (STFT) [1]. The Wigner distribution provides 
excellent resolution but suffers the crosstalk problem 
because it is a bilinear transform. On the other hand, STFT 
has no crosstalk but poorer resolution. It is linear with a 
sliding window, whose width is fixed and determines the 
time-frequency resolution. 

To improve the resolution of STFT, and get adaptive 
resolution with varying frequency, as wavelet transform, the 
S transform was proposed by Stockwell [2]. The main 
difference between S transform and STFT is that the width 
of window varies with frequency, and therefore it provides 
progressive resolution. The S transform adopts the Gaussian 
window, whose area under the window is equal to one, and 
therefore the sum of the S spectrum in the time direction 
becomes the spectrum of the original signal. This property 
provides an efficient algorithm of inverse S transform. 

Generally speaking, most filters are designed in the 
frequency domain and have the same effect to the whole 

time series. However, in the time-frequency representation, 
there is much more flexibility in filter design. Considering 
the linear S transform, for example, the filter may consist of 
data adaptive weighting window with higher values for 
signal and lower for noise. By multiplying the window in 
the S domain, we can derive the filtered signal after inverse 
transformation. This kind of filter has been employed in 
many medical and seismic signal processing, like Zhu et al. 
[3] and Pinnegar et al. [4]. They identified the noise regions 
and down-weighted them to remove the artifacts. 

To improve the time resolution in filters, Schimmel and 
Gallart [5] proposed a new algorithm of inverse S transform, 
which provides a much better time resolution than the 
original one in filters. However, there exists some distortion 
in this method. It will be enhanced the positive and 
suppressed the negative low frequency part of the signal. 

In this paper, we illustrate this problem and propose a 
modified inverse S transform algorithm that solves this 
problem and provides satisfactory time resolution in 
filtering. 
 

2. S TRANSFORM WITH TWO INVERSE 
ALGORITHMS 

2.1. Generalized S transform and inverse algorithm 
 
The S transform, derived by Stockwell et al. [2], of a time 
series u(t) is 

dteftwtufS fti2,,                    (1) 

where the w( ,f) is the Gaussian window 
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 and t are the time and f is the frequency variables.  is the 
center of the Gaussian window, and the width is controlled 
by f and k, which also determines the time-frequency 
resolution. 
The similarity between S transform and STFT is that they 
are both derived from the Fourier transform of the time 
series multiplied by a time-shift window. However, unlike 
STFT, the width of window varies with frequency in S 
transform. 
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Fig. 1. The discrete series m(kT) in (19)  and its spectrum. The spectrum of the delta function is also plotted in dotted line for 
comparing. One can find that the positive low frequency is enhanced and the negative low frequency is suppressed. 
 

To simplify the computation, Stockwell et al. also 
proposed another form of S transform [2] 
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U( ) is the Fourier transform of u(t). Therefore, the S 
transform can be calculated by the inverse Fourier transform. 

The inverse transform algorithm is simple since the 
Gaussian window satisfy the condition 

       1, dftw                                   (4) 

and therefore the integral of S spectrum over time becomes 
the frequency spectrum 

fUdtedftwtudfS fti2,,        (5) 

It means that the S spectrum is invertible and gives an easy 
and efficient inverse transform algorithm 

dfedfStu fti2
1 ,                         (6) 

Filtering in time-frequency representation, such as S domain, 
can be considered as multiplying the spectrum S( , f) with a 
weighting function F( , f), that is assigned high values to 
signals and low ones to noise. Consequently the filtered 
output time series is 

dfedfFfStu fti
filter

2
1 ,,                  (7) 

The imposed time localization of the filter may not correctly 
translate to output time series, because integration over time 
eliminate the time localization of the filter. 
 
2.2. Schimmel’s inverse S transform 
 
To keep the time localization property of the filter, another 
inverse transform algorithm was proposed by Schimmel et 
al. [5]. They found the time-time representation of the 
windowed time series u(t) 
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which reduces to u(t) = x(t,t) at  = t. They claimed that the 
Fourier transform of (8) is the main element of S transform 
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Therefore the original time series can be obtained by 
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In analogy to (7), the output time series after filtering is 

dfe
f

ftFftSktu fti
filter
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The major difference between (6) and (10) is that in (10) it 
integrates over frequency. For every instant, the inverse 
transformed time signal can be obtained just by the mapping 
spectrum information. 
  

3. THE MODIFIED INVERSE S TRANSFORM 

However, we found that the retrieved series by (10) is not 
identical to the original. 
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where  is the convolution and 
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It shows that the retrieved signal is the convolution of the 
original signal u(t) and m(t). If m(t) is the delta function, 
then the retrieved signal will be identical to the original. 
However, as demonstrated in Fig. 1, m(t) just approximates 
the delta function, and the spectrum of m(t) reveals that this 
algorithm will enhance the positive but suppress the 
negative low frequency components.  
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Fig. 2. The source chirp series in our example along with the retrieved series by Schimmel’s and our inverse algorithms. 
Distortion of Schimmels method in low frequency component is obvious. We perform Hilbert transform before S transform 
to make the signal analytic and avoid self-aliasing problem. Therefore the energy concentrates in the positive spectrum. 
 

To fix this problem and derive the correct inverse 
transformed signal, one should deconvolute the retrieved 
signal in (10) with m(t). 

tmFT
tuFT

IFTtu 2
3                           

(14) 
where m(t) is signal independent. 

For filtering in time-frequency spectrum as in (11), our 
algorithm also reduces the distortion 

tmFT
tuFT

IFTtu filter
filter

2
3                      (15) 

 
4. DISCRETE IMPLEMENTATION ALGORITHM 

 
Letting f  n /NT,   jT and t  kT where T is the 
sampling interval and j and n = 0, …, N-1, the discrete S 
transform [2] of time series u[kT] is 
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the discrete algorithm of Schimmel’s method is 
1
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let m[kT], k = -N/2, …, N/2-1, denote the periodic series 
corresponding to m(t) in (13) 
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The final inverse transformed discrete series are 

 
Fig. 3. S transform of the chirp series in Fig. 2. The gray 
regions are windows whose values are zero. 
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5. EXAMPLES 

5.1. Example 1: Distortion of Schimmel’s method 
 
Considering a chirp series (assume N = 128 and k = 0~N-1) 

Nkkkc /10/22cos  
In order to compare the performance of three inverse 
algorithms, we apply Hilbert transform, S transform and 
then inverse S transform by Stockwell’s original method, 
Schimmel’s new method, and our modified method. The 
Hilbert transform is performed before S transform to make 
the 
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Fig. 4. The expected ideal retrieved series along with the actual result from Stockwell’s, Schimmel’s and our method. 
 
series analytic and avoid the self-aliasing problem. The 
source series is plotted in Fig. 2 along with the result of 
inverse algorithms by Schimmel’s and our method. The 
result of Stockwell’s method does not present here since it 
is identical to the original chirp series. If we define the 
mean-square-error as 
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the MSE of Schimmel’s method is 3.02E-002, and the MSE 
of our method is 6.93E-030 in this example. 
 
5.2. Example 2: Modified inverse S transform in filtering 
 
Considering the same chirp series, whose time-frequency 
representation by S transform is plotted in Fig. 3. The gray 
regions in Fig. 3 are the windows whose values are zero. 
The chirp is multiplied by the windows in the time-
frequency domain. The expected ideal retrieved series after 
filtering is plotted in Fig. 4 along with the actual retrieved 
series by Stockwell’s, Schimmel’s and our modified method. 
It is obviously that the time localization of Stockwell’s 
inverse transform method is very poor. Schimmel’s method 
performs excellent time resolution but also brings some 
distortion. Our method fixes the distortion of Schimmel’s 
and provides much better time localization than Stockwell’s. 
In this example, the MSE of Stockwells method is 0.0311, 
Schimmel’s method is 0.0265, and our method is 0.0030 
respectively. 

6. CONCLUSION 
 
The inverse S transform algorithm is discussed and a new 
method is proposed here to complete the one by Schimmel 
et al. [5]. It derives the correct back transformed signal and 
also conserves satisfactory time localization property in 
filtering. Besides, it is computationally efficient and can be 
implemented by fast Fourier transform. 
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