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ABSTRACT
A time-frequency signal analysis tool, known as S-transform, can
suffer from poor energy concentration in the time-frequency domain.
In this paper, a frequency dependent Kaiser window is presented for
improving the energy concentration of the S-transform. The new
window is analyzed using a set of test signals. The results indi-
cate that the proposed scheme can significantly improve the energy
concentration in the time-frequency domain in comparison with the
standard S-transform.

Index Terms— Time-frequency analysis, window function,
Kaiser window, Gauss window, concentration measure.

1. INTRODUCTION

The S-transform is a conceptual hybrid of short-time Fourier anal-
ysis and wavelet analysis. It employs variable window length and
by using the Fourier kernel, the phase information provided by the
S-transform is referenced to the time origin. Hence, it provides sup-
plementary information about spectra which is not available from
locally referenced phase obtained by the continuous wavelet trans-
form [1]. The S-transform has already been used in several fields
[2]-[11].

Even though the S-transform is a valuable tool for analysis of
signals in many applications, still in some cases, it suffers from poor
energy concentration in the time-frequency domain. Several im-
provements of the time-frequency representation of the S-transform
have been reported. A generalized S-transform, proposed in [6] [7],
provides greater control of the window function, and the algorithm
also allows nonsymmetric windows to be used. Few window func-
tions are considered, including two forms of exponential functions,
amplitude modulation and phase modulation by cosine functions [6],
and a bi-Gaussian window [8]. However, in all existing literature,
none have considered how the proposed windows affect the autoterm
[12] of the S-transform. It should be noted that it is desired to have a
similar autoterm behaviour as in the standard S-transform in order to
maintain the desirable properties of the S-transform, such as, sharp
time resolution at higher frequencies or good frequency resolution at
lower frequencies.

The main contribution of this paper is to implement a frequency
dependent Kaiser window for the S-transform. The frequency de-
pendence of the window is achieved through a window parameter
α, and the variation of this parameter is proposed to provide dimin-
ished leakage of the signal components. The proposed scheme is
tested using a set of synthetic test signals. Using these signals, the
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S-transform with the frequency dependent Kaiser window is evalu-
ated and compared with the standard S-transform. The results have
shown that the proposed window improves the energy concentration
as compared with the Gaussian window.

This paper is organized as follows. In Section 2, the concept
of the S-transform is introduced, along with the detailed theoretical
development of the proposed algorithm. Section 3 evaluates the per-
formance of the proposed scheme using test signals. Conclusions are
drawn in Section 4 followed by a list of references.

2. THE PROPOSED SCHEME

2.1. Standard S-transform
The standard S-transform of a function x(t) is given by a convolution
integral in [1] as:

Sx(t, f) =

+∞∫
−∞

x(τ)w(τ − t, f) exp(−j2πfτ)dτ (1)

with a constraint
∫ +∞
−∞ w(t − τ, f)dτ = 1 ∀f. The window func-

tion used in the S-transform is actually a scalable Gaussian function
defined as

w(t, f) =
1

σ(f)
√

2π
exp

(
− t2

2σ2(f)

)
(2)

and the advantage of the S-transform over the short-time Fourier
transform (STFT) is that the standard deviation σ(f) is a function
of frequency, f , defined as

σ(f) =
1

|f | . (3)

Then, the window function is a function of time and frequency. As
the time domain width of the window is dictated by the frequency, it
can easily be seen that the window is wider in the time domain for
the lower frequencies, and narrower for the higher frequencies. In
other words, the window provides good localization in the frequency
domain for the low frequencies, while it provides good localization
in time domain for higher frequencies.

2.2. S-transform with frequency dependent Kaiser windows
A simple improvement to the time-frequency concentration of the S-
transform can be obtained by a frequency dependent Kaiser window
defined as:

wK(t, f) =
I0

(
α(f)

√
1− t2

)
I0 (α(f))

(4)

where I0 (·) is the zeroth-order Bessel function of the first kind, and
α(f) is a frequency dependent parameter. In order to determine the
optimal variation of α, two requirements should be met:
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• The frequency dependent window should provide similar time-
frequency tilings as the Gaussian S-transform.

• The variation of the window parameter α should be chosen
such that the autoterm with the proposed window provides
almost identical widths in the time and frequency domains,
where these widths are defined in [13]. Additionally, the au-
toterm should have a narrow mainlobe and sidelobes with rel-
atively smaller magnitude.

Let’s consider the first requirement. A frequency dependent
Kaiser window should achieve good frequency resolution at low fre-
quencies, and sharp time resolution at higher frequencies. Hence, it
is important to understand the behaviour of the Kaiser window for
various values of the parameter α in order to satisfy this requirement.
This is displayed in Fig. 1.
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Fig. 1. Comparison of the Kaiser windows for various values of α.

It is clear from Fig. 1 that as the value of α increases, the win-
dow becomes narrower in the time domain. Therefore, for a fre-
quency dependent Kaiser window to provide the same time-frequency
tilings as the frequency dependent Gaussian window, the variation of
α must be proportional to the frequency:

α(f) ∼ βf (5)

where β is a constant, which is to be used in satisfying the second
criterion.

The second requirement states that the proposed window should
produce an autoterm with similar widths in the time and frequency
domains to those produced with the Gaussian window, since the
Gaussian functions are the only solution that minimizes the duration-
bandwidth product posed by Heisenberg uncertainty principle [12].
Therefore, a further understanding of the autoterm obtained by the S-
transform is needed. Let’s consider a signal, x(t) = A(t) exp(jφ(t)),

assuming that the signal satisfies
∣∣∣A(1)(t)/A(t)

∣∣∣ � ∣∣∣φ(1)(t)
∣∣∣1. If

the following substitution u = τ − t is made in (1), then the squared
magnitude of the S-transform of x(t) is given by:

|Sx(t, f)|2 =

∣∣∣∣∣∣
+∞∫
−∞

x(u + t)w(u, f) exp(−j2πfu)du

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
+∞∫
−∞

A(u + t)w(u, f) exp (jfμ(u))du

∣∣∣∣∣∣
2

(6)

1f (k)(t) represents a kth derivative of f(t) with respect to t.

and μ (•) is given by

μ(u) =
φ(u + t)

f
− 2πu. (7)

Furthermore, let’s assume that the product A(τ + t)w(τ, f) satisfies
the following condition:

A(u + t)w(u, f) ≈ A(u)w(u, f). (8)

Using the assumption made about the signal, that is, the phase of
the signal varies faster than its amplitude, by applying the stationary
phase method [14], the S-transform of the signal at some stationary
point of the phase function, uo, is then given by:

|Sx(t, f)|2 ∼=
∣∣∣∣∣A(uo)w(uo, f)

√
2π

fμ(2) (uo)

× exp
(
j
π

4

)
exp [jfμ (uo)]

∣∣∣2
∼= 2π

fμ(2) (uo)
A2(uo)w

2(uo, f). (9)

It is important to mention that the stationary point, uo, is chosen such
that

μ(1)(uo) = 0. (10)

Since (9) is a signal dependent expression, a linear FM signal, x(t) =
exp

(
j a

2
t2
)
, is considered as an example. Then, the S-transform is

given by:

|Sx(t, f)|2 ∼= 2π

a
w2

(
2πf + at

a
, f

)
. (11)

Now, let’s examine how the Gaussian and Kaiser windows affect the
autoterm for the S-transform. Let’s use f = 3 Hz and a = 60π.
Also, for the Kaiser window, the effects of β = {1, π, 2π, 3π} are
considered as well. Fig. 2 represents the results of such analysis.
The graphs on the left side represent |Sx(t, f)|2, while the graphs
on the right represent 10 log10 |Sx(t, f)|2 . The results depict an in-
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Fig. 2. Autoterm of the S-transform for a = 60π: (a) Gauss window;

(b) Kaiser window with α(f) = f ; (c) Kaiser window with α(f) =
πf ; (d) Kaiser window with α(f) = 2πf ; (e) Kaiser window with

α(f) = 3πf .

teresting phenomenon. As the value of β is increased past π, i.e.
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β > π, the width of the mainlobe remains approximately the same.
Having almost the same width of the mainlobe, a further understand-
ing of the widths of the autoterms in the time (Δt) and frequency
(Δf ) domains [13] is required for the Gaussian and Kaiser win-
dows, in order to choose a proper value of β. The frequency and
time widths of the autoterm obtained by the Gaussian window are
equal to 1122 and 0.0002226, respectively. The results for the Kaiser
window are shown in Table 1.

Table 1. The frequency and time widths for the proposed window.

β = 1 β = π β = 2π β = 3π

Δf 3716 1089 540 359

Δt 0.0000683 0.0002297 0.0004630 0.0006962

From these results it is clear that the Gaussian window and a
Kaiser window with β = π provide almost the same widths in time
and frequency domain. Other values of β provide results which ei-
ther represent an autoterm which is narrower in the time domain (e.g.
β = 1), hence wider in the frequency domain; or narrower in the fre-
quency domain (e.g. β = 2π and β = 3π), hence wider in the time
domain. Inherently, these values of β would cause smearing of the
autoterm in one of the axis, and leakage of the signal components.

Therefore, a linear variation of the parameter α(f) is proposed
as

α(f) = πf (12)

since it provides the autoterm with almost the same widths in the
time and frequency domain calculated according to [13] as the Gaus-
sian window. However, it can be seen from Fig. 2 that this window
produces a narrower window in the logarithmic scale and signifi-
cantly reduced side-lobes meaning that this window form can pro-
vide improved time-frequency representation.

Further, it should be mentioned that additional improvement in
the energy concentration of the S-transform with the frequency de-
pendent Kaiser window may be achieved if an adaptive algorithm is
derived for automatic evaluation of the parameter α(f). However,
such adaptive scheme would inherently introduce additional compu-
tational burden.

3. PERFORMANCE ANALYSIS

In this section, the performance of the proposed scheme is examined
using a set of synthetic test signals. The goal is to examine how the
S-transform with the proposed window performs in comparison to
the standard S-transform. The proposed algorithm is also compared
to the short-time Fourier transform (STFT), in order to illustrate the
enhanced performance of the S-transform with the proposed win-
dow.

Let’s consider the following signal:

x1(t) = cos(20πt + 20πt2) + sin(150πt + 13 cos(4πt)) (13)

where 0 ≤ t < 1, and the signal does not exist outside the given in-
terval. For the STFT, a Gaussian window is also used in analysis, and
its standard deviation is set to 0.01. The STFT provides relatively
good time-frequency concentration for the sinusoidally modulated
component, however, the chirp has very poor concentration. The S-
transform with the Gaussian window provides good concentration
of both components, however, some spectral leakage is evident from
Fig. 3(c). Improvement to the time-frequency concentration is eas-
ily noticed if the signal is analyzed with the S-transform based on
the frequency dependent Kaiser window. The concentration of the
components is improved in comparison to both, the STFT and the
S-transform with the Gaussian window.
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Fig. 3. Time-frequency analysis of x1(t): (a) Time-domain repre-

sentation; (b) STFT; (c) S-transform with the Gaussian window; (d)

S-transform with the proposed Kaiser window.

A slightly more complicated example is one with two crossing
components defined as:

x2(t) = cos(20π log(10t + 1)) + cos(20πt + 90πt2) (14)

where x2(t) = 0 outside 0 ≤ t < 1. The complexity of this signal
lies in several facts. First, the components are crossing, and sec-
ondly, as frequency of the hyperbolic component decreases, the fre-
quency of the linear chirp increases. Therefore, very often, it is diffi-
cult to provide good concentration for both. In the analysis, a Gaus-
sian window is used for the STFT, and its standard deviation is set to
0.05. The time-frequency representation of the signal given by the
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Fig. 4. Time-frequency analysis of x1(t): (a)Time-domain repre-

sentation; (b) STFT; (c) S-transform with the Gaussian window; (d)

S-transform with the proposed Kaiser window.

STFT, as depicted in Fig. 4(b), shows that the higher frequencies of
the hyperbolic component are completely smeared, while the linear
chirp has constant concentration at all frequencies. The S-transform
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with the Gaussian window provides good concentration of the hy-
perbolic component, however, the concentration of the linear chirp
deteriorates at higher frequencies as shown in Fig. 4(c). The im-
provement to the concentration of the signal in the time-frequency
domain is again noticed with the S-transform based on the proposed
window. The hyperbolic component has a similar concentration as
in the case of the S-transform with the Gaussian window, while the
linear chirp is significantly better concentrated than the standard S-
transform.

Another important aspect in a signal analysis is instantaneous
frequency (IF) estimation [15]. In order to examine the behaviour of
the proposed window for the S-transform, let’s consider the follow-
ing signal:

x3(t) = sin(100πt + 4π cos(4πt)) (15)

where x3(t) is only defined in the interval given by 0 ≤ t < 1. The
signal is contaminated with a white Gaussian noise, whose variance
σ2 is varied between 0 and 1 in steps of 0.1. The IF is estimated from
the peaks of the magnitude of the time-frequency transform [15],
and the mean square error (MSE) of the estimator is evaluated for
the S-transform with the frequency dependent Gaussian and Kaiser
windows, and also for a newly introduced window width optimized
S-transform (WWOST) [16]. The error is defined as a difference
between the true value of the IF and the estimated value. The MSE
values represent an average of 1000 realizations.
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Fig. 5. MSE for the instantaneous frequency estimator based on the
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The results in Fig. 5 demonstrate the behaviour of the instan-
taneous frequency estimator based on the S-transform. It is clear
that the S-transform with the frequency dependent Kaiser window in
most cases produces smaller MSE in comparison to the standard S-
transform, and hence, more accurate estimation of the instantaneous
frequency. The behaviour of the IF estimator for small values of
variance, i.e., σ = {0, 0.1}, is the subject of a further investigation.
It should also be mentioned that the Kaiser based S-transform esti-
mator yields slightly higher MSE than the WWOST based estimator,
but does not have the computation cost associated with the WWOST.

4. CONCLUSION

In this paper, a frequency dependent Kaiser window is introduced as
an analysis window in the S-transform. The frequency dependence

of the window is achieved through the window parameter α such that
the autoterm with the Kaiser window has almost the same widths in
the time and the frequency domain as the Gaussian window, while
providing narrower mainlobe than the Gaussian window. The re-
sults of numerical analysis have shown that the proposed window
can enhance the energy concentration of the signals in comparison
to the standard S-transform. It is also shown that, in some cases, the
proposed window is capable of achieving higher concentration than
other standard methods, such as STFT. Furthermore, the instanta-
neous frequency estimator based on the S-transform with frequency
dependent Gaussian and Kaiser windows are compared, and the re-
sults have indicated that the time-frequency representation with the
proposed window provides a smaller MSE over range of noise levels.
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