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ABSTRACT

Multifractal Analysis is nowadays commonly used in real-life data
analyses and involved in standard signal processing tasks such as
detection, identification or classification. In a number of situations,
mostly in Image Processing, the data are available for the analyses
only in (possibly severely) quantized versions. The present contri-
bution aims at analyzing the robustness of standard multifractal esti-
mation procedures against quantization. To this end, we analyze the
behaviors and statistical performance of these procedures when ap-
plied to a large number of realizations of known synthetic multifrac-
tal processes subject to various quantization levels. Our study shows
that immunity against quantization can be obtained by restricting
the range of scales involved in multifractal parameter estimation to
the largest ones. Comparing multifractal analyses based on differ-
ent multiresolution quantities, increments, wavelet coefficients and
leaders, we show that wavelets, thanks to their good frequency lo-
calization, bring robustness against quantization when increments
do not. This study provides the practitioner with a clear guide line to
perform multifractal analysis over quantized data.

Index Terms— Fractals, Multifractal Analysis, Quantization,
Wavelet Leader, Increments

1. MOTIVATION

Self-similar and multifractal stochastic processes are nowadays com-
monly used to model or describe real-life data coming from a vari-
ety of applications of different natures and possessing some form of
scale invariance or scaling property. Empirical scaling analysis usu-
ally amounts to measuring scaling exponents that fully characterize
the process used for the modeling. In turns, these scaling attributes
are involved in standard signal processing tasks, such as detection,
identification or classification. Most stochastic models used to de-
scribe scaling in real-life data are continuous time and continuous
valued processes. However, for most applications, the analyzed data
are sampled in time, and the impact of this sampling of the estima-
tion of the multifractal parameters has been analyzed in various arti-
cles (cf. e.g., [1, 2, 3, 4]). In a number of situations, the data avail-
able for the analysis also present quantization in amplitude. This is
very often the case in Image Processing where the necessarily lim-
ited sizes of images yield quantized boundary lines (separating vari-
ous regions in the image). An informative example is provided by the
analysis of crack propagations, where the data consist of boundary
lines that split images into two binary regions. It is conjectured that
the characteristics of the crack propagation can be inferred from the
analysis of the scaling properties of these boundary lines. Because
it is often needed that a large number of such images are captured
along time, this may impose that sensors are used at poor resolu-
tion levels, hence resulting into the fact that the boundary lines are

available for the analysis only through (possibly severely) quantized
versions (cf. [4, 5] for a thorough description of this application).

To the best of our knowledge, the impact of this quantization
effect on the statistical performance of the procedures aiming at es-
timating multifractal attributes received little attention and precisely
constitutes the goal of the present contribution.

For this study, we make use of a synthetic multifractal process,
commonly referred to as Multifractal Random Walk [6], chosen both
for its simplicity and its ability to relevantly model a large class of
scaling properties observed in real-life data. The empirical multi-
fractal analysis we use here consists of the estimation of specific
multifractal attributes, recently shown to be interesting and referred
to as the log-cumulant [7]. Also, we compare analysis procedures
designed from different multiresolution quantities, increments, wave-
let coefficients and wavelet leaders. These latest were very recently
shown to be the most relevant quantities multifractal analysis should
be based on [8]. Multiresolution quantities, multifractal analysis,
log-cumulants and Multifractal Random Walks are introduced and
detailed in Section 2. One of the goals of the present contribu-
tion consists of studying the robustness against quantization that the
choice of a particular multiresolution quantity brings (or not) to em-
pirical multifractal analysis. Quantization and numerical simulations
are described in Section 3, while results are reported in Section 4.

2. MULTIFRACTAL ANALYSIS AND PROCESSES

Multiresolution Quantities. Performing the empirical multifractal
analysis (EMA), or scaling analysis, of some data X implies first
to chose a multiresolution quantity, TX(a, t), i.e., a quantity that
depends jointly on the time position t and the analysis scale a. His-
torically, EMA was based on first order increments [6]. The use of
higher order increments as a generalization has also been proposed.
Wavelet coefficients are nowadays widely used as standard quanti-
ties for EMA [9]. Very recently, new theoretical results showed that
EMA has to be based on wavelet leaders instead of wavelet coeffi-
cients. Because of their being hierarchical quantities, leaders can be
shown to enable a theoretically exact and practically accurate anal-
ysis of the multifractal properties for any type of multifractal pro-
cesses [8]. Such results have never been proven for increments or
for wavelet coefficients.

Let us now define the different TX(a, t). Let X(t), t ∈ [0, n)
denote the process or data under analysis and n its observation du-
ration. Let ψ0(t) denote a reference pattern with fast exponential
decay, called the mother-wavelet and {ψj,k(t) = 2−jψ0(2

−jt −
k), j ∈ Z, k ∈ Z} its templates, dilated to scales 2j , and translated
to time positions 2jk. The wavelet coefficients of X are defined
as dX(j, k) = 〈ψj,k|X〉. The mother-wavelet is further character-
ized by its number of vanishing moments, a strictly positive integer
Nψ ≥ 1 defined as: ∀k = 0, 1, . . . , Nψ − 1,

R
R t

kψ0(t)dt ≡ 0

and
R
R t

Nψψ0(t)dt �= 0. Let us also introduce the indexing λj,k =
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[k2j , (k+1)2j) and the union 3λj,k = λj,k−1∪λj,k∪λj,k+1. The
wavelet leaders are defined as LX(j, k) = supλ′⊂3λj,k

|dλ′ |, where

the supremum is taken on the discrete wavelet coefficients dX(·, ·) in

the time neighborhood 3λj,k over all finer scales 2j
′
< 2j [8]. The 4

TX(a, t) studied here (Increments of orders 1 and 2, wavelet coeffi-
cients and leaders) are hence defined as follows, for dyadic analysis
scales a = 2j (τ0 stand for arbitrary units):

T
(I1)
X (2j , t) = X(t+ 2jτ0)−X(t), (1)

T
(I2)
X (2j , t) = X(t+ 2 · 2jτ0)− 2X(t+ 2jτ0) +X(t),(2)

T
(W )
X (2j , t) = dX(j, k) = 〈ψj,k|X〉, (3)

T
(L)
X (2j , t) = LX(j, k) = sup

λ′⊂3λj,k

|dλ′ |. (4)

Empirical Multifractal Analysis: Log-Cumulants. A process
X is said to possess scale invariance or scaling properties if, for
some statistical orders q, the time averages of the (q-th power of the
modulus of the) TX(a, t) taken at fixed scales display power law
behaviors with respect to scales:

Sn(q, a) =
1

na

naX
k=1

|TX(a, ka)|q 
 Fq|a|ζ(q), (5)

over a wide range of scales a ∈ [am, aM ], aM/am � 1. The
ζ(q) are referred to as the scaling exponents of X and are closely
related to its theoretical multifractal spectrum [8, 9]. The ζ(q) can
be naturally expanded as a polynomial,

ζ(q) =
X
p≥1

cpq
p/p!, (6)

where, for truly multifractal processes, at least c1 and c2 differ from
0. It has been proven [7] that the multifractal parameters cp, p ≥ 1
can be defined from the p-th order cumulants Cjp of ln |TX(2j , t)|:

∀p ≥ 1 : Cjp = c0p + cp ln 2j . (7)

Thus, the measurements of the scaling exponents ζ(q) is now often
fruitfully replaced by those of the log-cumulants cp.
Estimation procedures. Given nj coefficients TX(2j , k2j), the
asymptotically unbiased and consistent standard estimators are em-

ployed to obtain estimates Ĉjp for the cumulants of ln |TX(2j , k2j)|,
where all |TX | below the threshold 10−10 are discarded. The cp can
then be estimated by linear regression (cf. Eq. (7)),

ĉp = log2 e

j2X
j=j1

wjĈ
j
p. (8)

The weights wj have to satisfy the constraints
Pj2
j1
jwj ≡ 1 andPj2

j1
wj ≡ 0.

Multifractal Random Walk. For empirical studies and numeri-
cal simulations, we use a multifractal process, Multifractal Random
Walk (MRW), chosen for its being simple both from theoretical and
numerical synthesis points of view and yet representative for a large
class of multifractal processes. MRW has been introduced in [6]
as a multifractal (hence non Gaussian) process with stationary in-
crements: X(k) =

Pn
k=1GH(k)eω(k), where GH(k) consists of

the increments of a normalized fractional Brownian motion (FBM)
with self-similarity parameter H . The process ω is independent of
GH , Gaussian, with non trivial covariance: cov(ω(k1), ω(k2)) =

λ ln
“

L
|k1−k2|+1

”
when |k1 − k2| < L and 0 otherwise. It has

been shown that MRW has interesting scaling properties as in Eq.
(5), with ζ(q) = (H + λ2)q − λ2q2/2. The simplicity of MRW
hence lies in its multifractal properties being entirely controlled by
the single c2 = −λ2.

Fig. 1. Quantization and empirical distributions. Empirical dis-
tribution of ln |TX(2j , ·)| (j = 3) for non quantized (gray area) and
quantized, b = 12, (solid line) signals.

3. QUANTIZATION AND NUMERICAL STUDY

Quantization. The quantized signal is defined as:

XΔ(n) = [X(n)/Δ] ·Δ, b = − log2 Δ,

where [·] denotes the rounding operation, Δ the quantization interval
width and b the quantization level (in bit).
Monte Carlo Simulations. The impact of quantization on the
estimation procedures is assessed by applying them to a large num-
ber NMC of realizations of MRW. The influence of quantization on
the performance of the estimation of cp is assessed through the mean

squared error: MSE =

r“bEĉp − cp”2

+ dVar ĉp, where bE and dVar

denote the sample mean and sample variance over Monte Carlo re-
alizations, respectively. To better understand the impact of quanti-
zation, we also study the empirical distributions of ln |TX(j, ·)|, as

well as the mean over realizations of Ĉjp .
Simulation Setup. The results are obtained using Daubechies2
wavelets (i.e., with Nψ = 2). Simulation parameters are set to
NMC = 1000 and n = 214, and process parameters to (H,λ) =

(0.72,
√

0.08), i.e., (c1, c2) = (0.8,−0.08).

4. QUANTIZATION IMPACTS

4.1. Distributions of ln |TX(2j , ·)|
Fig. 1 compares the empirical distributions of ln |TX(2j , ·)| (for a
given j) for a non quantized and quantized at level b signals. We
observe that while quantization does not have any visible impact on

the distributions of ln |T (W )
X (2j , ·)| and ln |T (L)

X (2j , ·)|, the distri-

butions of ln |T (I1)
X (2j , ·)| and ln |T (I2)

X (2j , ·)|, obtained from quan-
tized data, are lattice and significantly different from the distribution
obtained for the non quantized signal. This will, in turns, affect the

estimation of the Ĉjp .

4.2. Ĉjp as linear functions of j

Fig. 2 compares the means over Monte Carlo realizations of Ĉj1 and

Ĉj2 as functions of j, for non quantized data and for data quantized at
different levels. It yields a central observation: Quantization affects

Ĉjp at fine scales first, and then at coarser and coarser scales as Δ in-
creases (equivalently b decreases). Also, we observe that this impact
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Fig. 2. Ĉjp as linear functions of j. Ĉj1 (left column) and Ĉj2 (right
column) vs. j for non quantized data (dashed dotted line) and data
quantized at different levels b.

is much more dramatic for increments than for wavelet coefficients
and leaders. Whereas for increments the influence of quantization
propagates very fast up to the coarsest scale as Δ increases, it re-
mains restricted to fine scales for wavelet coefficients and leaders,
leaving the coarser scales unchanged and usable to perform the lin-
ear regressions yielding ĉp. For wavelet coefficients and leaders, a
meaningful range of scales for linear regression can still be found
for quantizations significantly below b = 5 for ĉ1 and b = 8 for ĉ2,
whereas for increments, linear regression is meaningless already for
b = 7 for ĉ1 and b = 12 for ĉ2.

This can be understood as follows. The increments T
(I1)
X (2j , t)

and T
(I2)
X (2j , t) can be read as wavelet coefficients obtained with

specific mother-wavelets: ψ0(t) = δ(t − τ0) − δ(t) and ψ0(t) =
−δ(t − 2τ0) + 2δ(t − τ0) − δ(t), respectively. Such ψ0 possess
respectively Nψ = 1 and Nψ = 2 vanishing moments and are com-
monly referred to as poor man’s wavelets, because they act as band
pass filters whose Fourier transforms Ψ0(ν) are poorly localized in
frequency, compared to those of standard mother wavelets, such as
the Daubechies’. This is illustrated in Fig. 3 where the Fourier
transforms of the increments are compared to that of a Daubechies2
wavelet. For simplicity the frequency axis is in octaves j = − log2 ν.
For small frequencies, the behavior of the Fourier transforms is con-
trolled by Nψ according to |Ψ0(ν)| ∼ C · |ν|Nψ , |ν| → 0. For

large frequencies, |Ψ(W )
0 (ν)| is characterized by a good frequency

localization, while |Ψ(I1)
0 (ν)| and |Ψ(I2)

0 (ν)| show much poorer fre-
quency localizations with important side lobes whose amplitudes do
not decrease. This poor frequency localization turns out to have a

1 3 5 7 9 11
0

1

2

3

4

j

2j
0|

0(
2j
0
)| j

0
=5

Fig. 3. Band pass filters. Fourier transforms of the mother wavelets
|2j0Ψ0(2

j0ν)| versus j = − log2(ν) for Daubechies2 (solid dotted
line), Increments of first (solid line) and second (dashed line) orders.

significant impact on the robustness of the multifractal parameter
estimation procedures against quantization. Indeed, a major conse-
quence of quantization consists of mimicking noise superimposition
to the original non quantized data. Fig. 2 suggests that this noise
mostly contributes at fine scales, or equivalently, at high frequen-
cies. Hence, any estimates involving such scales are poor whatever
the chosen multiresolution quantity. However, the well-localized in
frequency nature of the wavelet band pass filters significantly limits
the contamination of larger scales by the noise. Therefore, restricting
the linear regressions to larger scales yields satisfactory estimates.
Conversely, the poor frequency localization of the increment band
pass filters results in a significant pollution of the large scales by
the fine scale noise. This implies that, to perform estimation, one
has to restrict the regression range to much larger scales, if there are
any left that are not polluted, which hence significantly degrades the
performance.

4.3. Statistical Performance

Increments. T
(I1)
X (2j , ·) and T

(I2)
X (2j , ·) take on fewer and fewer

different discrete values as Δ increases, until eventually they only

consists of 0 or Δ values. Then, Ĉj1 = E ln |T (I)
X (2j , ·)| → ln Δ

and Ĉj2 = Var ln |T (I)
X (2j , ·)| → 0 (cf. Fig. 2, top row and second

row). In turns, the final log-cumulant estimates become ĉ1 = 0 and
ĉ2 = 0, no matter what values c1 and c2 actually take. Therefore,

the estimations based on T
(I1)
X and T

(I2)
X become meaningless for

severely quantized signals. Hence, for large Δ, their statistical per-
formance are no longer discussed. Ultimately, as Δ →∞, a similar
effect occurs for all TX however, at significantly higher Δ than for
increments.
Fixed regression range. Fig. 4 (top row) compares the MSEs
of the estimations of c1 and c2, using a fixed regression range, at
coarse scales j1 = 5 and j2 = 11. For non quantized signal, we
observe that increments and coefficients based estimators achieve
comparable performance, whereas the leaders based estimation is
better, and significantly so for c2. When the signal is quantized, the
performance of the increments based procedures degrade dramati-
cally and fast when b decreases, whereas the coefficient and lead-
ers based estimations maintain their performance over an impressive
range of coarse quantization levels: For c1, the performance of the
increments based procedures start degrading at b = 15, while that of
coefficients and leaders at b = 9, a factor of ≈ 60 in Δ; with a dif-
ference in MSE of up to a factor 7 ! For c2, the situation is similar:
The performance of the increments based procedures start degrading
as soon as b = 13, while that of coefficients and leaders are main-
tained up to b = 7 and b = 10, respectively, a factor of ≈ 60 in Δ,
with a difference in MSE of up to a factor 10 ! Further, we note that
the MSE mainly reproduces standard deviation, apart from at severe
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Fig. 4. Statistical Performance. MSE of ĉ1 (left column) and ĉ2
(right column), obtained for a fixed regression range j1 = 5, j2 =
11 (top row), and for the optimal regression range j1, j2 (bottom
row). The symbols ( 	 , � , × , ◦) correspond to (Increments of order
1, Increments of order 2, Wavelet Coefficients, Wavelet Leaders).
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Fig. 5. Optimal regression range. Optimal j1 and j2 to obtain
minimal MSE for ĉ1 (solid lines) and ĉ2 (dashed lines) vs. b.

quantization levels, where the bias becomes dominant.
Optimal regression range. In practice, the range of scales used
to perform the linear regressions yielding the final estimates ĉp is

not fixed a priori but by visual inspection of Ĉjp vs. j in order to
determine a region in which the scaling model is valid. Fig. 4 (bot-
tom row) shows the MSEs obtained by choosing the regression range
such that the MSE of the estimation is minimal. Comparing top and
bottom rows in Fig. 4, we observe that, as expected, estimation can
in general be improved by choosing an appropriate regression range.
Whereas for increments, this improvement is small and confined to
b > 14, relevant estimates of c1 and c2 are obtained still at b = 5
when using coefficients or leaders, a significant improvement com-
pared to the fixed regression region. We note further that whereas
leaders consistently outperform coefficients for sufficiently large b,
their performance eventually degrades faster for very heavily quan-
tized signals. Fig. 5 shows the optimal regression ranges. As ex-
pected, increasing Δ forces j1 to increase, restricting the estimation
to coarser and coarser scales. This happens much earlier for incre-
ments than for coefficients and leaders.
Conclusions. These analyses lead us to conclude that increments
can not be used when the data are quantized, even for low quantiza-
tion levels. We found that coefficients and leaders are significantly
more robust to quantization than increments of any order. By choos-
ing an appropriate regression region, the effects of quantization on
ĉp can be circumvented even for coarse Δ levels when using coeffi-
cients and leaders, whereas this is not the case for increments.

5. CONCLUSIONS AND PERSPECTIVES

We showed here that signal quantization significantly impairs empir-
ical multifractal analysis. Mostly, it pollutes the finest scales hence
implying a restriction towards the largest scales of the range of scales
used in the linear regression involved in multifractal parameter esti-
mation. However, we showed that choosing mother wavelets with a
good frequency resolution contains the noise pollution to as low as
possible scales, hence limiting the necessary narrowing of the regres-
sion range and the estimation performance degradation. Conversely,
the absence of localization of the frequency response of the incre-
ment based band pass filters results in a stronger narrowing of the re-
gression range for a given quantization level and hence in poorer per-
formance. Therefore, wavelet coefficients and leaders are to be pre-
ferred to increments of any orders to analyze quantized data. Also,
we showed that leaders consistently outperform coefficients for non
quantized data as well as for a large range of quantization levels. It
is only for very heavily quantized signals that coefficients eventually
become more robust than leaders. This study, which, to the best of
our knowledge had never been conducted, provides the practition-
ers with a careful framework for real life data analysis, in situations
where quantization occurs, such as the one described in Section 1.

An automatic selection of the most relevant regression range of
scales given a quantization level is currently being studied. It can be
assisted by the use of promising statistitical techniques such as boot-
strap [10]. Also, the impact of quantization will be further studied
in image processing in situations where textures are described using
multifractal models, but where the amplitudes are quantized.
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