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ABSTRACT

Iterated Function Systems (IFS) is a relevant model to produce frac-
tal functions, whether deterministic (with strict self-similarity) or
random (self-similar up to probability distribution). The basic idea
of such a construction is to start with an initial function and then
compress, dilate and translate it such that by doing so over and over
again, we end up with a self-similar signal. This construction relies
on a construction tree which has always been deterministic in the
litterature for signals. Here we introduce new fractals, called Gal-
ton Watson fractals, as xed points of IFS with a random underlying
construction tree and deterministic operators. We give a proof of the
existence and uniqueness of a xed point at the random and distri-
bution level.

Index Terms— Fractals, Galton Watson Trees, Iterated Func-
tion Systems, Random xed points, Self-Similarity.

1. INTRODUCTION

Since the discovery of the relevancy of fractal and 1/f processes
to model natural phenomena, the fractal formalism has received in-
creasing interests during the last 20 years, with applications to a
wide variety of elds such as nance, turbulence, meteorology, im-
age compression, network traf c [1, 2, 3]. Iterated Function Systems
(IFS) are a simple class of fractal sets, rst described rigorously by
Hutchinson [4]. IFS were later adapted to functions and measures
and were randomised in various ways [5]. In what follows we will
de ne a new class of random IFS for functions, and prove existence
and uniqueness using the approach of Hutchinson and Rüschendorf
[5].

Roughly speaking, a (deterministic) IFS recursively apply a con-
tractive operator T (random or not) on an initial function f0. Func-
tions considered in signal processing are usually nite energy signals
and we will denote this space by L2(X) for deterministic signals
and L2(X) for random signals so that we can assume f0 ∈ L2(X).
The completeness of the metric space where the fractal lives assures
the existence and uniqueness of a xed point f∗, thanks to the well
known Banach xed point theorem. In other words, if we denote by
Tn the n-th iterate of T , one has:

Tnf0 → f∗ as n→ +∞ (1)

where f∗ is the only function which satis es f = Tf . At each
iteration, functions are stretched, compressed, translated by means
of the contractive operator T . We assume that we can decompose
this operator into a set of M simpler operators φi : R × X → R,
i ∈ {1, ...,M}. Each φi will have its own way of deforming the
signal, and the resulting signal will lie in a subinterval of X (hence

the compression). Mathematically, this can be written as

(Tf)(x) =
MX
i=1

φi[f(�
−1
i (x)), �−1

i (x)]1�i(X)(x) (2)

for any x ∈ X. The �i’s, �i : X → X, partition the interval
X into disjoint subintervals and 1�i(X) is the indicator function of
the interval �i(X). In [5] this construction is randomised by let-
ting the set of M operators (φ1, . . . , φM ) be a random variable, but
M remains xed. The function f must also be randomised, and
in the right hand side of (2) we replace φi[f(�

−1
i (x)), �−1

i (x)] by
φi[f

(i)(�−1
i (x)), �−1

i (x)] where the f (i) are i.i.d. copies of f . If

f
d
= Tf then we say f is a random fractal function satisfying the

random IFS.
d
= stands for equality in distribution.

In this study we randomise (2) in a different manner: instead of
xing M we allow it to be random. We will assume that for each

value j of M there is a unique set φj of j operators (φj,1, . . . , φj,j).
We can allow φj to be random but to simplify our discourse we not
do so here.

IFS for sets and measures allowing random M have been con-
sidered by Falconer [6], Mauldin and Williams [7], but not for func-
tions. More recently, Barnsley et. al. have generalised IFS to so
called V -variable superfractals, however they also keep M xed [8].

When we iterate T we get a tree-structure describing the recur-
sive application of the φi. If M is xed then this is an M -ary tree.
In gure (1) we depict the underlying construction tree of a deter-
ministic IFS with 2 maps. However if M is random then assuming it
is chosen independently each time T is applied, the tree is a Galton-
Watson tree. In the next section, we will brie y describe Galton
Watson trees before describing our new random IFS in section 3.

2. GALTON WATSON TREES

A Galton Watson tree is a tree with a random number of branches at
each node where the offspring distribution is independent and iden-
tically distributed at each node. A node can be identi ed by means
of its label. If we denote by ∅ the root node, then the rst generation
of children will be denoted by i where 1 � i � ν∅ and ν∅ is the
number of children at ∅. Then the second generation will be labelled
ij, 1 � j � νi, and so on. More generally, a node is an element of
U =
S
n�0 N

∗n and a branch is a couple (u, uj) where u ∈ U and
j ∈ N∗. The length of a node u = i1 . . . in, |u|, is n.

By de nition a tree is a set of nodes, that is each tree ω is a
subset of U : ω ⊂ U . However, a subset of U must meet further
requirements in order to be a tree: (i) The root node ∅ belongs to
the tree. (ii) If a node i = i1 . . . in of ω has length n, then every
shorter node i1 . . . ik, k � n belongs to the tree as well. (iii) If the
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Fig. 1. Underlying tree structure of xed points of IFS

node labelled u belongs to ω, then uj is also in ω if j is a child of u.
Formally, these three conditions can be written as follows:

• ∅ ∈ ω

• ∀v ∈ U uv ∈ ω =⇒ u ∈ ω

• If u ∈ ω then uj ∈ ω ⇐⇒ 1 � j � νu(ω) where νu(ω)
represents the number of children at node u for the tree ω.

To illustrate, we present in gure (2) the tree ω = {∅, 1, 2, 3, 11, 12,
121, 21, 22, 211, 31, 311, 312}.

Let Ω be the space of trees, and u ∈ U . Then, de ne:

Ωu = {ω | u ∈ ω} (3)

Ωu is a subset of Ω whose elements are trees containing the node
u. In particular, Ω∅ = Ω. Clearly, νu de nes a map from Ωu to N
noting that νu is not de ned over the whole space Ω and represents
the number of children (in N) at a given node u of ω ∈ Ωu. Note
that if j ∈ N∗ then there is no change of notations: Ωuj is the space
of trees containing the node uj. Formally,

Ωuj = Ωu ∩ {νu � j} (4)

We endow Ω with the σ-algebra A de ned by

A = σ(Ωu | u ∈ U) (5)

Then we endow the subspaces Ωu with the σ-algebras Ωu ∩ A so
that νu are measurable. Next we de ne another function which will
be relevant in the remainder. Let Tu(ω) be the tree {v | v ∈
U and uv ∈ ω}. In other words, if ω ∈ Ω then Tu(ω) is the subtree
of ω rooted at u. Then Tu is a map from Ωu → Ω. One can check
that Tu are also Ωu-measureable functions.

Next, we endow the space (Ω,A) with a probability measure.
We do this so that given the tree up to generation n, the number of
children of each generation node are i.i.d.. One have the following
result [9]

PROPOSITION 1 For each probability q = (qj , j ∈ N) on N, there
exists a unique probability measure Pq on (Ω,A) which gives to the
random variable ν∅ the law q and for which, conditionnally on the
event ν∅ = j, the random variables Ti, 1 � i � j are independent
and identically distributed with distribution Pq.

(Ω,A, Pq) is the space of Galton Watson trees.
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Fig. 2. Example of a Galton Watson tree ω

3. GALTON WATSON SIGNALS

3.1. De nition

We are concerned with the de nition of a new fractal construction
when the underlying tree structure is no longer deterministic. In-
deed, we cannot apply the same random operator at each node of
the tree as the number of offspring is random. Instead, the operator
applied depends (only) on the number of offspring at a given node
and is always the same after conditioning on the number of chil-
dren. The randomness in the construction comes therefore from the
non-deterministic tree structure. Consider the space of p-integrable
functions on a compact subset X of the real line:

Lp(X) = {f : X→ R|

Z
X

|f(t)|pdt < +∞} (6)

Let (Σ,F , P ) be any probability space and consider the more gen-
eral space of p-integrable random functions:

Lp = {f : Σ→ Lp(X), t ∈ X | E
h Z

X

|f(t)|pdt
i
< +∞} (7)

endowed with the metric

d∗p : ∀(f, g) ∈ Lp d
∗
p(f, g) = E

1

p
ˆ
dpp(f, g)

˜
(8)

where dp(f, g) = (
R
X
|f(t) − g(t)|pdt)

1

p is the usual Lp metric.
Set p = 2 to work with nite energy signals. We will write fσ
for the value of f at some σ ∈ Σ. That is fσ ∈ Lp(X) . In the
remainder we will be particularly interested in the probability space
(Σ,F , P ) = (Ω,A, Pq). The operator T is then de ned on Lp(X)
by:

(Tf)(x) =

ν∅X
j=1

φν∅,j [f
(j)(�−1

ν∅,j
(x)), �−1

ν∅,j
(x)]1�ν∅,j(X)

(x) (9)

where f (j) are i.i.d. copies of f and the �ν∅,j partition X into dis-
joint subintervals. We can consider for example uniform partitions:

�ν∅,j(t) =
t

ν∅
+

j − 1

ν∅
, t ∈ X, 1 � j � ν∅. The contraction factor

of �ν∅,j is denoted by rν∅,j . φν∅,j are 2-variable maps Lipschitz in
their rst variable, with Lipschitz constant Kν∅,j . Also note that and
that ν∅ is a random variable with probability distribution q.

DEFINITION 1 ({φi,j, �i,j}; q) for i � 1 and 1 � j � i is a ran-
dom function scaling system.
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We say that a function is statistically self-similar for an IFS if it sat-
is es f = Tf in distribution. The major result in the next part is to
show the existence and uniqueness at random (a.s. convergence) and
distribution level of a function f which satis es the random function
scaling system.

3.2. Existence and Uniqueness of a xed point

THEOREM 1 Let (Ω,A, Pq) be the space of Galton Watson trees.
Consider ({φi,j, �i,j}; q) a random function scaling system, i � 1

and 1 � j � i . Let 1 < p < +∞. If λ =
P
i�1

iP
j=1

qiri,jK
p
i,j < 1

and
P
i�1

iP
j=1

ri,j
R
|φi,j(0, x)|

pdx < +∞ then for any f0 ∈ Lp(X),

there exists a unique random function f∗ which satis es f∗ = Tf∗

and such that

d∗p(T
nf0, f

∗) �
λ

n
p

1− λ
1

p

d∗p(f0, T f0) (10)

which tends to 0 as n→ +∞.

This theorem states that the IFS converges to a random xed
point starting from any initial function f0 under certain conditions.
The xed point exhibits self-similarity up to probability distribution.
The proof is in two steps. The rst thing to check is that the operator
T : Lp → Lp. Secondly, we need to show that T is contractive
in the complete metric space (Lp, d∗p). The Banach xed point will
assure the existence and uniqueness of a limit function at the random
level.

We rst de ne f (j) and g(j). To prove theorem 1 we need
to construct i.i.d. copies of the random function f . This can be
achieved using the homogeneity property of Galton Watson trees:
f
(j)
ω = fTj(ω). Since by proposition 1 the variables Tj are indepen-

dent and identically distributed with distribution Pq, the f (j) func-
tions are also i.i.d.

Step 1: Let f ∈ Lp. We show E
R
X
|(Tf)(x)|pdx < +∞, that

is Tf ∈ Lp To do so, rst notice that in the expression of Tf , the
indicator function partitions X into disjoint subintervals, so that the
absolute value of the sum equals the sum of absolute values. Fur-
thermore, using E(.) = E[E(.|ν∅)] (tower property of expectation)
and contractive properties of �ij , it is straightforward to check that
E
R
X
|(Tf)(x)|pdx is always smaller than

E

ν∅X
j=1

rν∅,jE[

Z
X

|φν∅,j [f
(j)(y), y]|pdy|ν∅] (11)

On the right hand side, we have set y = �−1
ν∅,j

(x) and we have ma-
jored the Jacobian of the tranformation by rν∅,j , the Lipschitz factor
of �ν∅,j . Note that E

R
X
|φν∅,j [f

(j)(y), y]|pdy can also be written
d∗pp (φν∅,j [f

(j), Id], 0) where Id stands for the identity function and
0 the zero function. Combining the triangle inequality of distance
and the fact that for any positive x and y: (x+ y)p � 2p(xp + yp),
(11) is majored by:

2pE
ν∅P
j=1

rν∅,jd
∗p
p (φν∅,j [f

(j), Id], φν∅,j [0, Id])+

2pE

ν∅X
j=1

rν∅,jd
∗p
p (φν∅,j [0, Id], 0) (12)

The rst part is bounded since f ∈ Lp. The second part can be writ-

ten
P
i�1

iP
j=1

qiri,j
R
|φi,j(0, x)|

pdx and is bounded by assumption.

Step 2: Let f and g in Lp. Then,

d∗pp (Tf,T g) = E dpp(Tf, T g)

= E

Z ˛̨
˛(Tf)(x)− (Tg)(x)

˛̨
˛pdx

By replacing (Tf)(x) and (Tg)(x) by their own expression, the
distance becomes:

= E

Z ˛̨
˛
ν∅X
j=1

φν∅,j [f
(j)(�−1

ν∅,j
(x)), �−1

ν∅,j
(x))]1�ν∅,j(X)

(x)

−

ν∅X
j=1

φν∅,j [g
(j)(�−1

ν∅,j
(x)), �−1

ν∅,j
(x))]1�ν∅,j(X)

(x)
˛̨
˛pdx

Now, using similar arguments as in Step 1 (tower property of expec-
tation and Lipschitz property of �ν∅,j), the distance between Tf and
Tg is smaller than

E

ν∅X
j=1

rν∅,jE
h Z

X

˛̨
˛φν∅,j [f (j)ω (y)), y]− φν∅,j [g

(j)
ω (y), y]

˛̨
˛pdy|ν∅

i

where we have made the same change of variable y = �−1
ν∅,j

(x). By
furthermore exploiting the Lipschitz property of φν∅,j and the i.i.d
distributions of f (j)(y) and g(j)(y) ∀j, we obtain the inequality

d∗pp (Tf, T g) � λd∗pp (f, g) (13)

where λ =
P
i�1

iP
j=1

qiri,jK
p
i,j . Since by assumption λ is smaller

than 1, the operator T is contractive in the complete metric space
(Lp, d

∗
p) and therefore admits a unique xed point f∗ (at the random

level) by the Banach xed point theorem. Clearly:

d∗pp (Tnf0, f
∗) � λd∗pp (Tn−1f0, f

∗) (14)

which lead to

d∗p(T
nf0, f

∗) � λ
n
p d∗p(f0, f

∗) (15)

Now using triangle inequality:

d∗p(f0, f
∗) � d∗p(f0, T f0) + λ

1

p d∗p(f0, f
∗) (16)

so that:

d∗p(T
nf0, f

∗) �
λ

n
p

1− λ
1

p

d∗p(f0, T f0) (17)

which concludes the proof of the theorem.
Remark: It follows directly from this result that for all f in

Lp(X), Tnf → f∗ almost surely as n→ +∞. To see this, suppose
that the converse is true, that is suppose that for some f ∈ Lp(X)
there exists A ∈ A such that Pq(A) > 0 and for all ω ∈ A,
Tnfω �→ f∗. Given A we can nd ε > 0 and Bε ⊂ A such that
Pq(Bε) > 0 and lim inf dp(T

nfω, f
∗
ω) � ε for all ω ∈ Bε. Then

it follows that lim inf d∗p(T
nf, f∗) � εPq(Bε)

1

p > 0, a contradic-
tion.

Next, note that this equality at the random level is also true at the
distribution level. However, equality in distribution does not implies
equality at the random level. The following result can be proven in
the same way as Hutchinson and Ruschendorf [5].
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Fig. 3. A Snapshot of the random xed point (a) and its mean (b).
The φi,j take the spacial form φi,j(u, v) = siu+ ζi,j(v) with s1 =
0.6, s2 = 0.7, s3 = 0.3, ζ1,1(t) = t(1− t), ζ2,1(t) = t3, ζ2,2(t) =
1− t2, ζ3,1(t) = t, ζ3,2(t) = (t+1)(2− t) and ζ3,3(t) = t(1− t)3.
The probability generating vector is (0.2, 0.3, 0.5) in (a) and (b),
(0.2, 0.2, 0.6) in (c) and (0.2, 0.1, 0.7) in (d).

COROLLARY 1 f∗ is the unique xed point of this IFS at the distri-
bution level.

The idea is to de ne a new space consisting of probability dis-
tributions of elements of Lp and a new metric over this space which
leads to a complete metric space. One can prove then that the oper-
ator T seen at the distribution level is contractive in this space and
therefore admits a unique xed point.

To illustrate our new construction, we present in gure (3) a
snapshot of the random xed point of a particular IFS. We also con-
sider 2 other random function scaling system by varying the proba-
bility generating vector and we plot their estimated mean using 100
realisations of the random xed point. If we assume that we are

working with nite energy signals, then λ =
P
i�1

iP
j=1

qiri,jK
2
i,j . The

mean is plotted for different probability distributions q. Looking at
the shapes of the mean, it seems that there is a continuous depen-
dency of the moment of rst order of the xed point with respect
to the distribution q. IFS parameters are given in the gure caption,
and are such that the operator T satis es for example λ = 0.48 < 1
in (b). Because of the convergence of the Galton Watson IFS, one

can derive a formal solution of the equation f
d
= Tf by iterating T

endlessly. To do so, consider i = i1 . . . in.

f = lim
n→+∞

X
i∈ω,|i|=n

φν∅,i1 ◦ . . . ◦ φνi1,...in−1 ,in ◦ f ◦ . . .

. . . ◦ �−1
νi1,...in−1

,in
◦ . . . ◦ �−1

ν∅,i1
(18)

where we have only considered functions φ with only 1 variable for
simplicity. From this formal solution, one clearly see that the ran-
domness directly appers in the IFS parameters.

4. CONCLUSION AND PERSPECTIVES

This new approach generalizes the IFS based construction of fractal
signals proposed by Hutchison and Ruschendorf in [5]. We proved
the existence and uniqueness of a self-similar function when we al-
low a random construction tree and deterministic operators. More-
over, this construction does not force the number of offsprings to be
bounded.

The xed points obtained all have a very erratic behaviour and
we speculate that they might not have a density. An ef cient tool
to caracterize such irregular objects is their multifractal spectrum
introduced rst by Frisch and Parisi [10] in the context of turbulence,
and adapted to random processes and functions. The motivation to
think of a multifractal spectrum for such fractal signals is due to
its cascade construction. Cascade processes are indeed known to
exhibit multifractal properties and results for random measures are
known [11].

Finally, his construction can be further extended when we con-
sider a random construction tree with random operators. In this case
the space of Galton Watson trees need to be extended in order to
endow each branch of a tree with a new operator.
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