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ABSTRACT

Time–frequency representations constitute the main tool for analysis
of non–stationary signals arising from environmental systems. Re-
cently, the interest for underwater dispersive channels appears since
dispersivity phenomena act at very low frequencies which are well
suited for long range underwater communication. In such a case,
a main interest is to perform estimation of the impulse response of
such channel for processing purposes. In this paper we introduce a
time–frequency analysis tool that aims to extract the time–frequency
components of the channel impulse response. This technique is
based on the adaptive time–frequency ltering whose parameters are
de ned by a local chirp matching procedure. Tests provided for real-
istic scenarios illustrate the potential and the bene ts of the proposed
approach.

Index Terms— Time–frequency analysis, System identi cation,
Dispersive channels.

1. INTRODUCTION

Considering the general non–stationary behavior of the observations
encountered in real applications, analysis in the eld of time–frequency
domain constitutes the best suited technique to identify the relevant
structures for information processing [1]. In the context of under-
water acoustic, considering the dispersive behavior of channels has
fundamental interest, especially in the case of systems operating at
low frequencies. In [2] a theoretical description of signal issued from
underwater dispersive channels is described. It shows that dispersiv-
ity phenomena introduce non–linear time–frequency deformations
of emitted signals. In addition, such deformations depend on the
propagation path, and leads to a multi–component heterogeneous
non–linear time–frequency behavior of the received signal. More-
over, coef cients loss and time–frequency proximity of paths bring
the signal model very complex. As shown in [1], [2], analysis of
dispersive underwater signals by typical time–frequency methods is
a challenging problem.

In this paper, a characterization framework that aims to deal with
signals issued from underwater dispersive environment is proposed.
The high–resolution requirement and the non–stationarity of all sig-
nals imply the construction of a new time–frequency analysis strat-
egy. A two steps solution is proposed. First step consists in roughly
modeling the instantaneous frequency of each component as a set of
local chirps. This model is established by nding the best matched
local chirp to the component. Unlike conventional approaches, the
rst step exploits the initial phase of the local chirps, demonstrating

the importance of this parameter. Second step exploits this estima-

tion to design the time–frequency lter for the extraction of the cor-
responding part of the signal. Finally, this procedure is performed
again for remaining components. The paper is structured as follows.
In section 2, the method is described in details. In section 3, after a
short presentation of the underwater dispersive channels, the poten-
tial of the proposed approach for some realistic data is proved. We
conclude in section 4.

2. METHOD

In a large number of applications (radar, sonar, underwater acoustic),
signals modeling is classically done by means of a multi–component
coherent time–frequency structures model. Such a model can be ex-
pressed by :

x(t) =
M�

m=1

xm(t) + n(t), (1)

where n(t) is the noise and where each component is expressed
as xm(t) = Am(t) cos(φm(t)). With this notations, Am(t) and
φm(t) are respectively the instantaneous amplitude and the instan-
taneous phase of the mth component. In what follows, we assume
that each Am(t) is slowly varying compared to φm(t). In addition,
we assume that the derivative of φm(t) is a continuous function.

Let the signal x(t) be the received signal that has to be character-
ized. In this context, the problem is to nd the set {Am(t), φm(t)}
such that

x̂(t) = argmin
{Am(t),φm(t)}

d (x(t), x̂(t)) , (2)

where d(x(t), x̂(t)) is a measure between the received signal and the
model.

In the case of unknown model, the shapes Am(t) and φm(t) are
unknown. Thus, due to the extreme variability of these parameters,
minimization of (2) is untractable, except for very simples cases.
To solve this problem we propose a general framework that aim to
estimate the set {Âm(t), φ̂m(t)} without prior knowledge on the
model.

2.1. General methodology

A broad class of characterization methods has been proposed for
non–stationary mono–component signals (e.g. polynomial modeliza-
tion of phase [3], chirplets [4],...). However, it is well–known that
such approaches lead to very high dif culties in the case of a het-
erogenous mixture of close time–frequency components.

To overcome this dif culties we consider, in this paper, the gen-
eral framework illustrated in Fig. 1. It is a recursive structure based
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Fig. 1. General principle of the proposed characterization frame-
work.

on two main steps: the time–frequency tracking step, and the time–
frequency ltering step which are described next.

2.2. Time-frequency tracking

The goal of this step is to estimate, from the mixture x(t), the instan-
taneous frequency law of the mth component xm(t). The overall
tracking strategy is illustrated illustrated in Fig. 2.

2.2.1. mono–component case

Let us rst consider the case when the received signal is a mono–
component signal such that x(t) = xm(t). We assume that xm(t)
can be approximated on each time segment Δt by a linear chirp
xm(t). Based on this assumption, xm(t) can be expressed on each
time segment t ∈ [jΔt, (j + 1)Δt[ by xm,j(t) = cos(φm,j(t))
where

φm,j(t) = aj + bj t+ cj t
2
. (3)

This local chirp model has been extensively considered in addition
with basis pursuit technics [4] to provide sparse representations of
signals. However, basis pursuit technics generally consider indepen-
dently each chirp which is not well–suited in our context : since the
instantaneous phase of xm(t) is a continuous function, one can ex-
pect that the chirp xm,j(t) is “connected” with the chirp xm,j+1(t).

While the match ltering using reference signals (e.g. chirps)
is a traditional technique in radar or sonar [1], its interest in time-
frequency analysis has been materialized by a local match ltering
procedure [2]. In the remainder of this paper, we suggest to improve
the classical matched ltering approach by requiring continuity of
the initial phase between chirps xm,j(t) and xm,j+1(t).

This can be interpreted as requiring following continuity con-
straints

1 Chirp sequence has continuous instantaneous frequency

bj+1 = bj + 2 (jΔt) (cj − cj+1). (4)

2 Chirp sequence has continuous instantaneous phase

aj+1 = aj + bj (jΔt) + cj (iΔt)2. (5)

Let xm,0(t) be the initial chirp that best approximate the compo-
nent xm(t) over the time interval [0,Δt[. The next chirp xm,1(t) on
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Fig. 2. Illustration of the time–frequency grouping strategy. The
search of the next segment can be reformulated as a multi-hypothesis
coherent detection problem.

the time–interval [Δt, 2Δt[ is de ned to be the one that best match
xm(t) with regards to the phase constraints (4) and (5).

We formulate this problem as a multi–hypothesis detection prob-
lem where H1, . . . ,HM are the chirp candidates. The problem of
nding the best candidate can be handled by testing all hypotheses
HM and choosing the one for which the match between the candi-
date and the true signal maximizes some criteria.

The problem of nding the best candidate when the match de-
pends on amplitude and phase of signals is generally refereed as a
coherent detection problem [6] and can be solved by a large variety
of techniques. In [7], authors suggest to use the so–called quadrature
matched ltering. This approach consists in comparing the signal
xm(t) with in phase and in quadrature waveforms such that

xc =

� (j+1)Δi

jΔi

xm(t) cos φm,j(t) dt (6)

xs =

� (j+1)Δi

jΔi

xm(t) sin φm,j(t) dt (7)

and to calculate the penalty criteria p(xm(t), xm,j)

p (xm, xm,i) =
nsx

2
c − 2 ncs xc xs + nc x

2
s

2 nc ns − 2 n2cs
, (8)

withnc =
� (j+1)Δi
jΔi

cos2 φm,j(t)dt, ns =
� (j+1)Δi
jΔi

sin2 φm,j(t)dt

and ncs =
� (j+1)Δi
jΔi

cos φm,j(t) sin φm,j(t)dt. Thus, the penalty
criterion p(xm(t), xm,j) is maximized for xm(t) = xm,j gives op-
timal estimation if n(t) is a white Gaussian noise.

2.2.2. multi–component case

In practice, the received signal x(t) is a multi–component signal. In
this case, the white Gaussian noise is clearly not satis ed because of
the multi–component nature of x(t).

For this reason, we suggest to introduce a preprocessing step in
the quadrature matched ltering to isolate the speci c time–frequency
band on which the chirp candidate is de ned. Since the chirp candi-
date is a linear modulation of frequency, we suggest to use the class
of linear lters based on the Fractional Fourier transform described
in [8] to isolate the speci c time–frequency band around the instan-
taneous frequency of the chirp candidate. We de ne as x(ci)(t) the
signal that is obtained by ltering x(t) around the instantaneous fre-
quency of xm,j . This signal x(ci)(t) is given by :

x
(ci)(t) = Ftan−1(ci)

��
F− tan−1(ci)x

�
(f).H(f)

�
(t), (9)
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where Fα is the fractional Fourier transform of angle α, and H(f)
is the frequency response of a pass-band lter.

From the estimation xm,1, we repeat this procedure for all time
segments jΔt to obtain the sequence {xm,0(t), . . . , xm,J(t)}.

2.3. Time-frequency ltering

The goal of the time–frequency ltering step, is to extract from the
received signal x(t) the component xm(t) that has be tracked in the
previous tracking step.

Let w(t) be a continuous strictly increasing function. We de ne
the local harmonic convolution operator [5] between the signal x(t)
and the lter function h(t) by :

x(t)
w(t)
∗ h(t) =

�
R

d w(τ )

dτ
x(τ ) h

�
w
−1(t)− w

−1(τ )
�
dτ. (10)

It can be noticed that in the special case wherew(t) = t, the classical
convolution operator is recovered. Based on this operator, the linear
time–invariant ltering theory is extended to a more general class of
linear lters that is valid for non–stationary signals.

The general principle of this class of lters is depicted in Fig. 3.
Its aim is to decompose the received signal x(t) into two signals
xL(t), xH(t) such that each signal is contained in a speci c time–
frequency region delimited by a time–varying cutoff frequency f =
e(t).

It can be shown that such a decomposition can be obtained by
processing the signal by means of (10) if the following conditions
are ful lled [5]

1. w(t) function matches the time–varying cutoff frequency such
that

w(t) = f0

�� t
−∞

e(u) du

�−1

, f0 ∈ R+ (11)

2. lter functions hL(t) and hH(t) are respectively lowpass and
highpass lters, with zero–phase and with a cutoff frequency
equals to f0.

Thus, from the chirp sequence {xm,0(t), . . . , xm,J (t)} we gen-
erate the estimated instantaneous frequency IF (t) of the component
xm(t) by B–spline interpolation. Then, the the extraction of the kth

component is performed with two lters that have time–varying cut-
off frequency e(t) = IF (t) ± Δf where 2Δf is the band of the
time–varying passband lter.

3. NUMERICAL EXAMPLES

In this section, performances of the proposed characterization frame-
work is illustrated in the context of underwater dispersive channel.
For this purpose, we rst introduce the considered signal model and
then illustrate performances of the method on a realistic simulation.

3.1. Underwater dispersive channels

From a signal processing point of view, the underwater channel is
characterized by a non–linear time–frequency distortion of the emit-
ted signal which depends on two effects [9]:

• Attenuation due to the re ection to the bottom and see sur-
face;

• Non-linear group delay, having distinct characteristics for each
path, which produces a different delay for each spectral com-
ponent.
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Fig. 3. Time–frequency interpretation of the class of linear time–
varying lter based on non–unitary time–warping operators. Top:
Received signal x(t). Bottom–left: “lowpass” ltered signal.
Bottom–right: “highpass” ltered signal.

This last parameter gives the dispersive behavior of the channel and
is described through the modal propagation theory [9]. The impulse
response x(t) of dispersive channels is expressed as a sum of modes
x(t) =

�N
n=1 hn(t) where the mode xn(t) is given by :

xm(t) = F−1 (αm(f) exp (−jkr(f,m)r)) (12)

with F−1 the inverse Fourier transform, N the number of signi -
cant propagation paths, αm(f) the attenuation of mth path, r the
transmitter-receiver range and kr(m, f) a function associated to the
mth path. Close–form computation of (12) is a dif cult task and
requires the knowledge of the physical parameters of the channel.
Still, a close–form expression of the group delay of xm(t) is avail-
able in particular cases (constant sound speed pro le), leading to the
following expression :

1

2π

∂kr(m, f)

∂f
= r

�
� c2

2πf

	

2π f

c

�2

−



k −

1

2

�2
π2

h2

�

−1

(13)
where c is the sound velocity, and h is the transmitter depth.

To illustrate performances of the proposed characterization frame-
work, we consider a numerical simulation of the impulse response
of an underwater dispersive channel. The simulated channel is 30m
deep and has a rigid bottom. The distance between the source and
the receiver is 1500m. Since the sound speed is approximatively
1500 m.s−1 in water, reception instant is one second delayed from
emission instant. The simulated signal is sampled at 3kHZ, has
13000 samples, has been performed on the frequency band [20Hz−
−300Hz] and is corrupted by an additive white Gaussian noise with
a 10 dB signal–to–noise ratio. The theoretical representation and the
spectrogram of the simulated signal are displayed in the Fig. 4.

3.2. Results

The characterization procedure consists in the separation of each
mode xm(t) from the signal x(t) by iterating the tracking–extraction
algorithm described in Sec. 2.

The rst step, consists in generating a chirp sequence {x̂m,j(t)}
in order to estimate the instantaneous frequency of xk(t). The sec-
ond step consists in designing a pass–band time–varying lter whose
time–varying cutoff frequency matches the chirp sequence {x̂m,j(t)}
and extracting the mode x̂m(t).
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Fig. 4. Realistic numerical simulation of the impulse response of
an underwater dispersive channel. Top: theoretical time–frequency
representation of the channel impulse response. Each line represent
a mode and the color bar represents the energy attenuation at one
meter. Bottom: spectrogram of the channel impulse response.

1 1.5 2 2.5 3 3.5 4
0

200

400

Time (s)

F
re

qu
en

cy
(H

z)

Fig. 5. Result of the time–frequency tracking step after 8 itera-
tions. This tracks are used for the design of the non–stationary time–
frequency lter.

Once the extraction of the mode x̂m(t) has been completed,
the extraction of the next mode x̂m+1(t) is performed by the same
tracking–extraction procedure on the residual signal x(t)− x̂m(t).

The result of the tracking step after 8 iterations is depicted in
Fig. 5. As can be seen, each track is clearly associated with one
time–frequency component as they approximately match their in-
stantaneous frequencies. Based on this family of tracks, it is straight-
forward to perform the extraction of the component by means of a
passband time–varying lter.

The smoothed pseudo–Wigner–Ville distribution of the three rst
extracted components and the sum of the smoothed pseudo–Wigner–
Ville of the 8 extracted components are depicted in the Fig. 6. As can
be seen, all highest energetic modes have been successfully extracted
by the proposed tracking–extraction procedure.

However, we noticed that the proposed tracking method has dif-
culties to deal with quasi–vertical structures. This is explained by

the fact that the discrete–time estimation of the integrals involved in
the calculation of (8) is dif cult due to the rapid oscillations of the
cos and sin terms. This limitation can be overcome by estimating
integrals in time for all ci < 1 and in the dual spectral domain for
all ci > 1. This issue is left for future work.

4. CONCLUSION

In this paper we proposed a new time-frequency method to extract
time-frequency components of the impulse response of a dispersive
channel. For this purpose, we introduced a new technique based on
two main features. The former is the local chirp matching using all
chirp parameters. While the provided instantaneous frequency esti-
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Fig. 6. Results of the tracking-extraction method.Top from left to
rigth : smoothed pseudo Wigner–Ville of respectively, the rst, the
second and the third extracted modal arrivals. Bottom: sum of the 8
smoothed pseudo Wigner–Ville of each extracted modal arrivals.

mation is just an approximation it constitutes only an intermediary
result used to design the time-frequency lter. This latter feature
serves to accurately extract the corresponding signal ensuring also
the conservation of both amplitude and time-frequency contents of
the given structure.

Results proved the potential of the method in a realistic context
from both time-frequency component proximity and amplitude. In
future works we will study improvement of the proposed tracking
tool by using cubic frequency modulation instead of the chirp model.
This way, the tracking will achieve a better matching ratio with non-
linear time-frequency structures. In another hand, tests for real data
will be conducted.
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