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ABSTRACT

Wigner’s theorem states that there exists no bilinear time-
frequency distribution (TFD) that has correct marginals and
is nonnegative everywhere. This means that any attempt to
interpret a bilinear TFD as an energy or power distribution
must be fraught with problems. In this paper, an alternative
perspective is proposed, which allows a local interpretation at
a point in the time-frequency plane. This approach is based on
analyzing the properties of a chirping ellipse that, at a given
time instant, gives the best local approximation of the signal
from a given frequency. This chirping ellipse is described in
terms of its mean shape, orientation, and direction of polariza-
tion (counterclockwise or clockwise). A time-frequency co-
herence measures the quality of the approximation that this el-
lipse presents. The ellipse parameters and the time-frequency
coherence can be expressed in terms of the Rihaczek TFD.

Index Terms— Time-frequency analysis, rotary compo-
nent method, polarization analysis.

1. INTRODUCTION

Wigner’s theorem [1] says that there can be no bilinear time-
frequency distribution (TFD) that has correct marginals and
is nonnegative everywhere. Despite this fundamental limita-
tion, it is quite common in the time-frequency literature to
refer to bilinear TFDs as energy or power distributions. The
most popular bilinear TFD that is covariant to shifts in time
and frequency is the Wigner-Ville distribution. The Wigner-
Ville TFD has several attractive properties [2] but its main
perceived advantage seems to be the fact that it is real. How-
ever, since the Wigner-Ville TFD generally takes on negative
values except for a special class of signals, it does not allow
a local interpretation as the energy or power in the vicinity of
some time instant t and frequency f .

In this paper, we propose an alternative perspective in bi-
linear time-frequency analysis, which does not try to inter-
pret a TFD as an energy or power distribution. Our treatise is
based on the Rihaczek TFD (R-TFD) [3], which is also bilin-
ear and covariant to shifts in time and frequency, but less pop-
ular than the Wigner-Ville TFD. The advantage of the R-TFD

is that it presents an inner product between the time-domain
signal at given time t and its frequency-domain representa-
tion at given frequency f [4]. As such, it determines a time-
varying Wiener lter for estimating the signal at time t from
phasors rotating with frequency ± f . In this paper, we build
upon this result from [4] to develop a powerful geometric in-
terpretation of the R-TFD. Our approach is inspired by the
rotary component method from meteorology and oceanogra-
phy [5] and polarization analysis from geophysics and optics
[6].

2. RIHACZEK DISTRIBUTION

In this paper, we analyze a zero-mean real nonstationary ran-
dom signal x(t) via its corresponding analytic signal s(t) =
x(t)+ jH{x(t)}, where H{·} denotes the Hilbert transform.
We rst review the R-TFD [3] as a means to describe the
second-order statistics of a nonstationary signal.

The signal s(t) is assumed to be harmonizable. Its Cramér–
Loève spectral representation is then given by the mean-square
convergent integral

s(t) =

∫ ∞

0
dS( f )e j2π f t .

For a general nonstationary random process, the increment
process dS( f ) is nonorthogonal and improper [7] with (Her-
mitian) spectral correlation Rss∗(ν, f ), de ned by

E{dS( f +ν)dS∗( f )} = Rss∗(ν, f )dνd f , (1)

and complementary spectral correlation [8] Rss(ν,− f ), de-
ned by

E{dS(− f +ν)dS( f )}= Rss(ν,− f )dνd f . (2)

This representation can require the use of Dirac delta func-
tions in Rss∗(ν, f ) and Rss(ν,− f ); in particular, in the station-
ary case. If the complementary spectral correlation vanishes,
s(t) is called proper.

In (1) and (2), f is a global frequency variable and ν is
a local frequency offset. Since s(t) is analytic, Rss∗(ν, f ) is
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zero for f < max(0,−ν), and Rss(ν,− f ) is zero for f < 0 or
f > ν. Therefore, throughout this paper, f will be assumed to
be nonnegative, f ≥ 0.

Since s(t) is harmonizable, so are its temporal correlation
and complementary temporal correlation,

rss∗(t,τ) = E{s(t)s∗(t− τ)}

=
∫ ∞

0

∫ ∞

− f
Rss∗(ν, f )e j2π(νt+ f τ) dνd f (3)

rss(t,τ) = E{s(t)s(t− τ)}

=
∫ ∞

0

∫ ∞

f
Rss(ν,− f )e j2π(νt− f τ) dνd f (4)

In (3) and (4), t is a global time variable and τ is a local time
lag. In order to obtain a characterization in terms of global
time t and global frequency f , we either Fourier-transform
the temporal correlation and complementary correlation on
local τ, or inverse Fourier-transform the spectral correlation
and complementary correlation on local ν. This yields the
Hermitian Rihaczek time-frequency distribution (HR-TFD)
[3] and the complementary Rihaczek time-frequency distri-
bution (CR-TFD) [8],

Vss∗(t, f ) =

∫ ∞

−∞
rss∗(t,τ)e− j2π f τdτ

=

∫ ∞

− f
Rss∗(ν, f )e j2πνt dν (5)

Vss(t,− f ) =

∫ ∞

−∞
rss(t,τ)e j2π f τdτ

=
∫ ∞

f
Rss(ν,− f )e j2πνt dν (6)

Together, the HR-TFD and CR-TFD comprise the R-TFD.
The R-TFD is generally complex, yet time- and frequency-

marginals of the HR-TFD are nonnegative [2]. The time-
marginal is the instantaneous power at time t,

∫ ∞

0
Vss∗(t, f )d f = rss∗(t,0)≥ 0.

The frequency-marginal is the energy spectral density (ESD)
at frequency f ,

∫ ∞

−∞
Vss∗(t, f )dt = Rss∗(0, f )≥ 0.

The nonnegativity of the the HR-TFD marginals has lead
many to interpret the HR-TFD and other TFDs in Cohen’s
class as energy or power distributions. As the HR-TFD itself
takes on complex values, such an interpretation seems dissat-
isfactory because it does not work locally in the vicinity of
some point (t, f ) in the time-frequency plane. The purpose
of this paper is to offer an alternative perspective, which is
based on the key insight that the R-TFD is an inner product
[4]. This can be seen by explicitly computing the HR-TFD

(5) and CR-TFD (6),

Vss∗(t, f )d f = E{s(t)(dS( f )e j2π f t)∗}, (7)

Vss(t,− f )d f = E{s(t)(dS∗( f )e− j2π f t)∗}. (8)

This shows that the HR-TFD is the Hilbert space inner prod-
uct between the random variable s(t), at xed time instant t,
and the counterclockwise rotating phasor dS( f )e j2π f t , at xed
frequency f . The CR-TFD is the Hilbert space inner product
between s(t) and the clockwise rotating phasor dS∗( f )e− j2π f t .

3. POLARIZATION ELLIPSE

It was found in [4] that because of (7) and (8), the HR-TFD
determines the Wiener lter for estimating s(t) from the coun-
terclockwise rotating phasor dS( f )e j2π f t , for xed time t and
frequency f . Similarly, the CR-TFD determines the Wiener
lter for estimating s(t) from the clockwise rotating phasor

dS∗( f )e− j2π f t . We now consider estimating s(t) from both
counterclockwise and clockwise rotating phasors as

ŝ f (t) =W1(t, f )dS( f )e j2π f t +W2(t,− f )dS∗( f )e− j2π f t . (9)

Such an estimate is called widely linear [9] because it is linear-
conjugate linear in dS( f )e j2π f t . With the short-hand notation

dZ(t, f ) =

[
dS( f )e j2π f t

dS∗( f )e− j2π f t

]
,

the Wiener lter is obtained as[
W1(t, f )

W2(t,− f )

]T

= E
[
s(t)dZH(t, f )

]
E
[
dZ(t, f )dZH (t, f )

]†
,

where (·)† denotes the Moore-Penrose pseudo-inverse (or gen-
eralized inverse). The use of the pseudo-inverse is neces-
sary because the matrix E

[
dZ(t, f )dZH(t, f )

]
is singular if

R2
ss∗(0, f ) = |Rss(2 f ,− f )|2. In the singular case, dS∗( f ) =

αdS( f ), |α| = 1, so that a widely linear estimator offers no
advantage over a strictly linear estimator, which means we
may let W2(t,− f ) = 0. For R2

ss∗(0, f ) �= |Rss(2 f ,− f )|2, the
matrix E

[
dZ(t, f )dZH(t, f )

]
is nonsingular and its pseudo-

inverse is the regular matrix inverse. As a result, we obtain

W1(t, f ) =

⎧⎨
⎩

Vss∗Rss∗−VssR∗sse
−2 j2π f t

(R2
ss∗−|Rss|2)d f

R2
ss∗ �= |Rss|

2

Vss∗

Rss∗ d f R2
ss∗ = |Rss|

2

W2(t,− f ) =

⎧⎨
⎩

VssRss∗−Vss∗Rsse2 j2π f t

(R2
ss∗−|Rss|2)d f

R2
ss∗ �= |Rss|

2

0 R2
ss∗ = |Rss|

2

For notational convenience, we have dropped the function ar-
guments. It is understood thatVss∗ stands for Vss∗(t, f ), Vss for
Vss(t,− f ), Rss∗ for Rss∗(0, f ), and Rss for Rss(2 f ,− f ). Now
let

U(t, f ) =W1(t, f )dS( f )

U(t,− f ) =W2(t,− f )dS∗( f ).
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Fig. 1. Ellipse traced out in the complex time-domain plane.

For xed t0 and f , but varying t,

ut0, f (t) =U(t0, f )e j2π f t +U(t0,− f )e− j2π f t (10)

describes a random ellipse in the complex time-domain plane
[10]. This ellipse provides the widely linear minimum mean
squared error approximation of s(t) at t = t0, and one ellipse
exists for every time instant t0 and every frequency f .

As depicted in Fig. 1, each sample function of ut0, f (t) de-
scribes an ellipse whose major axis is tilted by ψ. The lengths
of the major and minor axis are 2a and 2b, respectively. In
order to characterize the (ensemble) mean properties of the
random ellipse ut0, f (t), we introduce the energy spectral den-
sity (ESD) matrix

Jss(t, f ) =

[
Jss∗(t, f ) Jss(t, f )
J∗ss(t, f ) Jss∗(t,− f )

]

= E

[
U(t, f )

U∗(t,− f )

][
U∗(t, f ) U(t,− f )

]
. (11)

Here, Jss∗(t0, f ) = E |U(t0, f )|2 is the ESD and Jss(t0, f ) =
E [U(t0, f )U(t0,− f )] is the complementary ESD (C-ESD) of
the ellipse ut0, f (t) given by (10).

It can be shown [5, 10] that, for xed t0 and f , the mean
orientation of the ellipse is given by the phase of the C-ESD,

tan2ψt0, f =
ImJss(t0, f )
ReJss(t0, f )

.

We will also introduce another angle χt0, f (−π/4 ≤ χt0, f ≤
π/4) following [6, 10],

sin2χt0, f =
Jss∗(t0, f )− Jss∗(t0,− f )
Jss∗(t0, f )+ Jss∗(t0,− f )

. (12)

It can be shown [6] that

tanχt0, f =±
bt0, f

at0, f
,

where at0, f and bt0, f denote the mean lengths of the major
and minor axis of ut0, f (t). If χt0, f > 0, then sample func-
tions of ut0, f (t) trace out the ellipse in counterclockwise di-
rection. This situation is referred to as counterclockwise (or
left-handed) polarized. On the other hand, if χt0, f < 0, then
sample functions of ut0, f (t) trace out the ellipse in clockwise
direction, which is called clockwise (or right-handed) polar-
ized. Hence, the angle χt0, f speci es the mean shape and po-
larization of the ellipse.

There are special cases where the ellipse degenerates into
a circle or straight line. If χt0, f = π/4, then the lengths of
the major and minor axis are equal and ut0, f (t) describes a
circle in counterclockwise direction, i.e., it is counterclock-
wise circularly polarized. Similarly, if χt0, f = −π/4, ut0, f (t)
is clockwise circularly polarized. Finally, if χt0, f = 0, then
the length of the minor axis is 0, and ut0, f (t) describes a line,
i.e., it is linearly polarized.

So far, we have constructed a different ellipse for every
time instant t0. An alternative point of view, which we will
pursue, is that the approximation

u(t, f ) = ŝ f (t) =U(t, f )e j2π f t +U(t,− f )e− j2π f t (13)

represents a time-varying “chirping ellipse,” characterized by
time-frequency dependent mean orientation ψ(t, f ) and shape
and polarization χ(t, f ). We will continue to refer to (13) as an
ellipse, while keeping in mind that it describes a strict ellipse
only for time-independentU(t, f ) and U(t,− f ).

We will now evaluate the mean ellipse properties (orien-
tation, shape, and polarization) by explicitly computing the
ESD matrix (11)

Jss(t, f ) = E

[
W1(t, f )dS( f )

W ∗
2 (t,− f )dS( f )

][
W ∗

1 (t, f )dS∗( f )
W2(t,− f )dS∗( f )

]T

= Rss∗(0, f )(d f )2

×

[
|W1(t, f )|2 W1(t, f )W2(t,− f )

W ∗
1 (t, f )W ∗

2 (t,− f ) |W2(t,− f )|2

]

It is particularly interesting to examine the ellipse shape and
polarization, which, for R2

ss∗ �= |Rss|
2, can be done through the

angle χ(t, f ) de ned by (12),

sin2χ(t, f ) =

(|Vss∗|
2−|Vss|

2)(R2
ss∗ − |Rss|

2)

(|Vss∗|2 + |Vss|2)(R2
ss∗ + |Rss|2)−4Re{Vss∗V ∗ssRss∗Rsse2 j2π f t}

.

If s(t) is proper at time t and frequency f , Vss = 0 and Rss = 0,
then χ(t, f ) = π/4. This says that a proper analytic signal is
(completely) counterclockwise circularly polarized. On the
other hand, if R2

ss∗ = |Rss|
2, then dS∗( f ) = αdS( f ), |α| = 1,

and it follows that |Vss∗ |
2 = |Vss|

2. In this case, the signal
s(t) can be regarded as maximally improper at (t, f ). A maxi-
mally improper analytic signal has χ(t, f ) = 0 and is therefore
linearly polarized.
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While |Rss|
2 ≤ R2

ss∗ , the magnitude of the HR-TFD does
not provide an upper bound on the magnitude of the CR-TFD,
i.e., |Vss|

2 � |Vss∗ |
2. Moreover, |Vss∗ |

2 = |Vss|
2 does not im-

ply R2
ss∗ = |Rss|

2. Therefore, it is possible that s(t) is clock-
wise polarized at (t, f ), i.e., χ(t, f ) < 0, provided that the sig-
nal is “suf ciently improper” at (t, f ). This result may seem
surprising, considering that an analytic signal is synthesized
from counterclockwise phasors only.

In order to judge the quality of the approximation that the
ellipse u(t, f ) presents, we calculate the mean squared error
at time t as

E |s(t)− ŝ f (t)|
2 = rss∗(t,0)(1−|ρ(t, f )|2).

Here we have introduced the time-frequency coherence

|ρ(t, f )|2 =
E
[
s(t)dZH(t, f )

]
E
[
dZ(t, f )dZH(t, f )

]†
rss∗(t,0)

×E [dZ(t, f )s∗(t)]

=
Rss∗(|Vss∗ |

2 + |Vss|
2)−2Re{Vss∗V ∗ssRsse2 j2π f t}

rss∗(R2
ss∗ − |Rss|2)

.

The nal expression is valid for R2
ss∗ �= |Rss|

2, and rss∗ is un-
derstood to mean rss∗(t,0). The time-frequency coherence
satis es 0≤ |ρ(t, f )|2 ≤ 1. If |ρ(t, f )|2 = 1, the ellipse u(t, f )
is a perfect approximation of s(t) at time t. If |ρ(t, f )|2 = 0, it
is not possible to construct a widely linear estimate of s(t) at
time t from frequency f , and no ellipse u(t, f ) exists at (t, f ).

In both the proper case, which is characterized by Vss = 0
and Rss = 0, and the most improper case, characterized by
R2

ss∗ = |Rss|
2, the time-frequency coherence becomes

|ρ(t, f )|2 =
|Vss∗|

2

rss∗Rss∗
(14)

because in these cases s(t) can be estimated from counter-
clockwise rotating phasors only. In other words, the opti-
mum widely linear estimator is strictly linear, which means
W2(t,− f ) = 0 in (9). The optimum strictly linear estimator
and the corresponding time-frequency coherence (14) have
been previously considered in [4].

4. DISCUSSION AND CONCLUSIONS

We have presented an alternative way of interpreting bilin-
ear time-frequency distributions. This approach is based on
analyzing the properties of a chirping ellipse that, at a given
time instant t, gives the best local approximation of the sig-
nal from a given frequency f . This ellipse is characterized by
its mean shape, orientation, and direction of polarization. We
have also de ned a time-frequency coherence that determines
the quality of the approximation that this ellipse presents at
(t, f ). This perspective allows a local interpretation at a point
(t, f ) in the time-frequency plane, which is not possible from

the classical point of view that considers time-frequency rep-
resentations as energy or power distributions.

The ellipse parameters and time-frequency coherence can
all be expressed in terms of the R-TFD, but both the HR-TFD
and the CR-TFD are required. The CR-TFD is necessary even
though this paper restricted attention to the analysis of a real
signal via its corresponding analytic signal. The shape and
orientation of the ellipse as well as the direction of polariza-
tion depend on the CR-TFD. Ignorance of the CR-TFD would
imply that all analytic signals be counterclockwise circularly
polarized. In reality, however, the ellipse may take on any
shape between the two extreme cases of line and circle and
may turn either counterclockwise or clockwise.

The discussion can be extended to general complex sig-
nals that are not analytic. A signi cant difference of the gen-
eral complex case is that nonanalytic signals can have varying
degrees of polarization. This is reported in the journal version
[10] of this conference paper.
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