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ABSTRACT

In this paper, we consider online (sequential) portfolio selec-
tion in a competitive algorithm framework. We construct a
sequential algorithm for portfolio investment that asymptoti-
cally achieves the wealth of the best piecewise constant rebal-
anced portfolio tuned to the underlying individual sequence
of price relative vectors. Without knowledge of the invest-
ment duration, the algorithm can perform as well as the best
investment algorithm that can choose both the partitioning of
the sequence of the price relative vectors as well as the best
constant rebalanced portfolio within each segment based on
knowledge of the sequence of price relative vectors in ad-
vance. We use a transition diagram similar to that in [1] to
compete with an exponential number of switching investment
strategies, using only linear complexity in the data length for
combination. The regret with respect to the best piecewise
constant strategy is at most O(ln(n)) in the exponent, where
n is the investment duration. This method is also extended
in [2] to switching among a nite collection of candidate al-
gorithms, including the case where such transitions are repre-
sented by an arbitrary side-information sequence.

Index Terms— Adaptive signal processing, Bayes proce-
dures, Finance

1. INTRODUCTION

In this paper, we de ne a competitive framework for portfo-
lio selection algorithms for a market with a nite number of
stocks to trade. The behavior of a market with m stocks is
modeled by a sequence of price relative vectors
xn = x[1], . . . ,x[n], where x[t] ∈ Rm

+ . The jth entry xj [t]
of a price relative vector x[t] represents the ratio of closing
to opening price of the jth stock for the tth trading day. An
investment at day t is represented by the portfolio vector b[t],
b[t] ∈ Rm

+ and
∑m

j=1 bj [t] = 1 for all t. Each entry bj [t]
corresponds to the portion of the wealth invested in the stock
xt[j] at day t. The wealth achieved after n trading periods is
given by

∏n

t=1 bT [t]x[t]. For our competitive framework, the
performance measure for a candidate portfolio selection al-
gorithm is de ned with respect to the performance of the best

algorithm from a class of competing algorithms. As an exam-
ple, Cover [3] presented a portfolio selection algorithm which
achieves the sequentially accumulated wealth of the best con-
stant rebalanced portfolio from the class of all constant rebal-
anced portfolios for any sequence of price relatives, to rst-
order in the exponent. We call such algorithms that asymp-
totically achieve the performance of the single-best algorithm
from a given class of algorithms (for any sequence of price
relatives) “static” universal algorithms, since the competition
class contains a xed set of algorithms, and performance is
compared with the best, xed element of the class.
In this paper, we extend the results for static algorithms

to a framework where the underlying competition class in-
cludes the ability to switch (in time) among the various static
elements. We investigate this problem, when each compet-
ing algorithm can divide the sequence of price relatives into
arbitrary segments, say k of them, and t each contiguous
segment with the best portfolio assignment algorithm from a
given class of static algorithms for that segment, such as a
xed constant rebalanced portfolio. For k such transitions,
there exist k + 1 segments. The total wealth growth of a
class member with such a partition is the product of the wealth
growth of all xed static algorithms associated with each seg-
ment. The best partition is the one which gives the maximum
total wealth. We seek to outperform all such switching algo-
rithms, simultaneously for any number of possible switches,
k. A natural restriction is k < n. Unlike [3, 4, 5], here we
try to exploit the time-varying nature of the best choice of al-
gorithm for any given sequence of price relatives, since the
choice of the best portfolio from a class of static portfolios
can change over time. Rather than trying to nd the best par-
titioning of the data or even the best number of transitions,
our objective is simply to achieve the performance of the best
partition directly, for all k.
For a given sequence of price relative vectors xn, a com-

peting portfolio selection algorithmwith a transition path Tk,n

with k transitions, represented by (t1, . . . , tk), partitions xn

into k + 1 segments such that xn is represented by the con-
catenation of

{x[1], . . . ,x[t1−1]}{x[t1], . . . ,x[t2−1]} . . .{x[tk], . . . ,x[n]}.

Givenn and k, there exist
(
n−1

k

)
such possible transition paths
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Tk,n. Given the past values of the desired price relatives x[t],
t = 1, . . . , n − 1, a competing algorithm assigns a portfolio
vector bi in each segment as

b̂[t] = bi

where ti−1 ≤ t < ti, i = 1, . . . , k + 1. For simplicity
we assume t0 = 1 and tk+1 = n + 1. Here, the compet-
ing class contains all constant portfolios in each segment that
have the same bi for each sample of the sequence x[t] for
t = ti−1, . . . , ti − 1, where each bi can be selected inde-
pendently for each region i = 1, . . . , k + 1. In determining
the best algorithm in the competing class, we attempt to out-
perform all such portfolios, including the one that has been
selected by choosing the transition path Tk,n and the constant
portfolio vectors bi in each segment based on observing the
entire sequence xn in advance, simultaneously, for all k. As
such we try to minimize the following regret:

Rb[n]
�
= sup

xn

sup
b1,...,bk+1∈Rm

+

t1,...,tk∈{2,...,n}

k+1∏
i=1

ti−1∏
t=ti−1

bT
i x[t]

n∏
t=1

b̂
T
[t]x[t]

where b̂[t] is a sequential portfolio assignment at time t, i.e.,
b̂[t] may be a function of x[1], . . . ,x[t − 1] but does not de-
pend on the future, Tk,n is any transition path representing
(t1, . . . , tk) with an arbitrary number of transitions k. We
will show that we can construct a sequential portfolio selec-
tion algorithm for which this regret is at most (k + 1)(m −
1) ln(n)/2+k ln(n)+O(k+1) in the exponent for any Tk,n,
k or n and with no prior knowledge of Tk,n, k or n. We recog-
nize the term (k + 1)(m− 1) ln(n)/2 as the parameter regret
or additional loss due to the estimation of the best constant
portfolio in each of the k + 1 separate regions and the term
k ln(n) as the transition path regret due to not knowing the
best transitions times.
Universal algorithms that can compete against constant

rebalanced portfolios or against a set of nite portfolio selec-
tion algorithms have studied by a number of authors [5, 3, 4].
Competing against a portfolio selection algorithm that can
switch among a nite number of M static strategies, e.g.,
bi = [0, . . . , 0, 1, 0, . . . , 0]T is all zeros except a single com-
ponent for some pure strategy, (not against a constant rebal-
anced portfolio which is the arbitrary linear combination of
theseM pure strategies) is studied in [6]. In [6], the authors
provide two sequential portfolio selection algorithms. The
rst algorithm needs a switching rate parameter which can
only be optimized after observing the whole xn. The sec-
ond algorithm is an extension of this rst algorithm and uses
a time dependent switching rate which does not need a priori
optimization. This second algorithm also has a better perfor-
mance bound. However, even with this restrictions on bi’s,

they are unable to provide an update directly on the portfo-
lio vectors for the second algorithm. Here, we can provide
the direct portfolio updates that can achieve the nal wealth
of the best constant rebalanced portfolios in each segment.
Although, we use Cover’s universal algorithm in our deriva-
tions for the corresponding bounds, the methods we use are
generic. The algorithmswe introduce can easily employ other
algorithms such as [5] instead of [3], or other algorithms that
are sequentially universal with respect to the static class of
constant rebalanced portfolios. The additional complexity of
our algorithms over the complexity of the static algorithms
used in the construction is linear in data size n.
The organization of the paper is as follows. In Section 1,

we provide the main theorem of this paper as an upper bound
on the performance of the universal portfolio selection algo-
rithm. The construction of the algorithm and an outline of the
proof of the theorem are given in Section 3. Detailed proofs
and extension of this algorithm to switching with an arbitrary
side-information sequence are provided in [2].

2. UPPER BOUNDS

The main results of this section are the upper bounds con-
tained in Theorem1. The correspondinguniversal and strongly
sequential portfolio selection algorithm is constructed at the
end of the proof in Section 3.
For a given sequence of price relative vectors xn, a com-

peting portfolio selection algorithmwith a transition path Tk,n

with k transitions, represented by (t1, . . . , tk), dividesxn into
k + 1 segments such that xn is represented by the concatena-
tion of

{x[1], . . . ,x[t1−1]}{x[t1], . . . ,x[t2−1]} . . .{x[tk], . . . ,x[n]}.

Given the past values of the desired price relatives x[t], t =
1, . . . , n − 1, a competing algorithm assigns a portfolio vec-
tor bi in each segment as b̂[t] = bi where ti−1 ≤ t < ti,
i = 1, . . . , k + 1. For simplicity we assume t0 = 1 and
tk+1 = n + 1. For this setting we have the following theo-
rem.
Theorem 1 : Let xn = x[1], . . . ,x[n] be an arbitrary se-
quence of price relative vectors such that x[t] ∈ Rm

+ for all
n and some components of x[t] can be zero. Then we can
construct sequential portfolios b̃

u,b[n] complexity linear in
O(nm+1) per trading period such that for any ε > 0 and all
k

Rb[n] =

sup
b1,...,bk+1∈Rm

+

t1,...,tk∈{2,...,n}

k+1∏
i=1

ti−1∏
t=ti−1

bT
i x[t]

n∏
t=1

b̃
T

u,b[t]x[t]

(1)

satis es

ln
Rb[n]

n
≤

(k + 1)(m− 1)

2

ln(n)

n
+2(k+ε)

ln(n)

n
+O

(
k

n

)

(2)
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and
ln

Rb[n]

n
≤

(k + 1)(m− 1)

2

ln(n)

n
(3)

+ 2 ((k + 1)ε + k)
ln(n/k)

n
+ O

(
k

n

)

for any Tk,n representing transition path (t1, . . . , tk) and any
k, such that b̃b,u

[t] does not depend on Tk,n, k or n.
The upper bound in Equation (2) is better (tighter) when

the number of transitions is small, i.e., k � n. If the num-
ber of transitions is closer to O(n), then the upper bound
in Equation (3) is better. Theorem 1 states that the aver-
age regret of the universal portfolio b̃

u,b[t] is within O((k +

1)n−1 ln(n)) of the best batch piecewise constant rebalanced
portfolioswith k transitions (tuned to the underlying sequence),
uniformly, for every sequence of price relatives xn.

3. PROOF AND IMPLEMENTATION
Outline of Proof of Theorem 1: The proof of the theorem uses
ideas from sequential probability assignment. For each possi-
ble transition path Tk,n representing (t1, . . . , tk) with k tran-
sitions and data length n, we consider a family of portfolios,
eachwith its own set of constant vectorsBk = [b1, . . . , bk+1]

T

where each bi represents a constant portfolio vector for the ith
region. Without loss of generality we assume that t0 = 1 and
tk+1 = n + 1. For each pairing of Tk,n and Bk, a mea-
sure of the sequential wealth achieved by the corresponding
competition algorithm is constructed: W (xn | Bk, Tk,n)

�
=∏k+1

i=1

∏ti−1
t=ti−1

bT
i x[t]. Given any Tk,n, the competing algo-

rithm with best constant portfolios in each region assigns to
xn the largest wealth, i.e.,W ∗(xn | Tk,n)

�
= supBk

W (xn |

Bk, Tk,n). MaximizingW ∗(xn | Tk,n) over all Tk,n (with k

transitions) yieldsW ∗(xn | T ∗k,n)
�
= supTk,n

W ∗(xn | Tk,n)

Here, W ∗(xn | T ∗k,n) = W (xn | Bk
∗, Tk,n

∗) corre-
sponds to the wealth achieved by the best portfolio in the com-
petition class with k transitions. Our goal is to demonstrate
a sequential algorithm which achieves W (xn | Bk

∗, Tk,n
∗)

given any k and n, and without a priori knowledge of k or
n. We will accomplish this result using a double mixture ap-
proach. First we will demonstrate an algorithm achieving the
performance of the competing algorithm with the best con-
stant portfolios in each region given any Tq,n, i.e., W ∗(xn |
Tq,n). Then we will show that a proper weighted combination
of all such algorithms over all Tq,n, q = 1, . . . , n, can be used
to nd a sequential algorithm that will achieveW ∗(xn | T ∗k,n)
for any k.
For any given Tk,n, the wealth achieved by the algorithm

with the best constant rebalanced portfolios in each region,
W ∗(xn | Tk,n), can be asymptotically obtained by using the
sequential portfolio assignment algorithm [3] (which is uni-
versal with respect to the class of all constant rebalanced port-
folios), independently for each segment, i.e., apply b̃ti−1

[t]

between time ti−1 up to ti, where b̃ti−1
[t] is the Cover’s al-

gorithm with anmth order Dirichlet distribution, i.e., μ(b) =

D(1/2, . . . , 1/2) that uses the price relative sequence start-
ing from time ti−1 up to time t, t < ti. In each segment
this universal algorithm achieves the performance of the best
constant rebalanced portfolio for that region, hence,

ln(W̃ (xn | Tk,n)) ≥ (4)

ln {W ∗(xn | Tk,n)} −
(k + 1)(m− 1)

2
ln(n) + O(1).

Hence given Tk,n, using b̃ti−1
[t] in each segment de nes a

sequential algorithm that asymptotically achieves the perfor-
mance of the algorithmwith the best constant rebalanced port-
folio for each segment. For all Tk,n and k, we construct a
similar sequential algorithm yielding a total of 2n−1 such se-
quential portfolio assignment algorithms.
We then de ne a weighted mixture of the wealth achieved

by all such sequential predictors over all possible Tk,n and k

W̃u(xn)
�
=

n−1∑
k=0

∑
Tk,n

P (Tk,n)W̃ (xn | Tk,n), (5)

with a suitable prior over the partitions Tk,n, P (Tk,n). For
any transition path Tk,n, the weighting (or the assigned prob-
ability P (Tk,n) to each transition path) would be nonnega-
tive and would satisfy

∑n−1
k=0

∑
Tk,n

P (Tk,n) = 1. Now we
have a total wealth achieved by the class of all possible con-
stant portfolios and for all possible transition paths. By Equa-
tion (5), we can conclude that this achieved wealth satis es
ln W̃u(xn) ≥ lnP (Tk,n) + ln W̃ (xn | Tk,n), for any transi-
tion path Tk,n, since W̃u(xn) ≥ P (Tk,n)W̃ (xn | Tk,n).
Clearly, the assigned probability or weight for Tk,n di-

rectly contributes to the regret as ln(P (Tk,n)) over the best
batch algorithm given any path. Hence, it is desirable that
the weight of the “best path” be assigned as large as possible.
This weight assignment should also be constructed so that the
overall weighting and the resulting portfolio assignment algo-
rithm can be sequentially computable.
We will use three different weighting methods, rst one

is a form of estimated probability for P (Tk,n) with k transi-
tions, i.e, the Krichevsky-Tro mov (KT) weighting used in
[1, 7]. The other two are from [8] and they yield tighter upper
bounds for ln(P (Tk,n)) than the KT estimate. For these there
weighting methods we have

lnP (Tk,n) ≤
3k + 1

2
ln(n/k) + O(k) (6)

and lnP (Tk,n) ≤ (k + ε) ln(n) + O(k) (7)
and lnP (Tk,n) ≤ (k + (k + 1)ε) ln(n/k) + O(k) (8)

for all ε > 0. Other weighting methods used in [1, 8] (such
as the reduced state, quadratic complexity probability assign-
ment) can be extended to yield prediction algorithms using
the same methodology that we introduce in this paper.
We now have a method of selecting portfolios that achieves,

to rst order in the exponent, the same wealth as that achieved
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by the best batch constant portfolios, for any partition Tk,n. In
this sense, W̃u(xn) is a “universal” portfolio selection method.
It still remains to nd a sequential algorithm whose wealth
assignment is as large as W̃u(xn), the wealth achieved by all
sequential algorithms represented in Equation (4) weighted
by the corresponding P (Tk,n), k = 1, . . . , n.
We are now ready to nd the actual universal portfolio as-

signment algorithm. By de nition W̃u(xn) =
∏n

t=1
W̃u(xt)

W̃u(xt−1)
.

If we look each term in the product closely, we observe that
W̃u(xn)

W̃u(xn−1)
= b̃

T

u,b[t]x[t].

for a strongly sequential portfolio assignment algorithm b̃
u,b[t].

Hence, b̃
u,b[t] is the required portfolio vector at each time t.

Nevertheless, in this form the sequential algorithm b̃
u,b[t] re-

quires 2n different sequential algorithms to run in parallel on
the sequence of price relatives. We will now demonstrate that
this sequential portfolio assignment algorithm can be calcu-
lated ef ciently by using a linear transition diagram, similar
to that used in [1] (after assigning appropriate weights to each
branch).
At each time n, we divide the set of all possible paths

Tk,n, k = 1, . . . , n into n disjoint sets. We label each set
by a state variable sn representing the most recent transition
of a corresponding path within the period 1 ≤ t ≤ n such
that for any Tk,n, sn = tk. Given n, there can be at most
n states sn = 1, . . . , n. At time n, all transition paths with
the same last transition instant, tk = s, are represented by
the state sn = s. We then de ne Wn(sn = s, xn) as the
achievedwealth of all sequential algorithms at state sn at time
n. Here, Wn(sn = s, xn) is the weighted sum of all the
wealth achieved by the sequential algorithms as given in [1]
whose transition paths ended up at sn = s; i.e., for all paths
T

′

such that the last transition was at sn = s

Wn(sn = s, xn)
�
=

∑
T

′ :sn=s

P (T
′

)W̃ (xn | T
′

).

Since the states partition the set of paths Tk,n, W̃u(xn) =∑
T

P (T )W̃ (xn | T ) =
∑n

sn=1 Wn(sn, xn). To obtain a
closed form expression for W̃u(xn)

W̃u(xn−1)
, we show thatWn(sn =

s, xn) can be calculated recursively by using the linear tran-
sition diagram as in [1]. As such, state sn represents the most
recent transition within the period 1 ≤ t ≤ n. After some
algebra, it can be shown that [2], the nal universal algorithm
is given as
b̃

u,b[n] =

n−1∑
sn−1=1

μ(sn−1)

{
Ptr(sn = sn−1 | sn−1)b̃sn−1

[n] + Ptr(sn = n | sn−1)
1

m

}
.

where 1 is a vector of size (m × 1) of all ones, b̃sn−1
[n] is

Cover’s algorithm that started at time sn−1 and the weights
μ(sn−1) are de ned as

μ(sn−1 = j)
�
=

Wn−1(sn−1 = j, xn−1)∑n−1
sn−1=1 Wn−1(sn−1, xn−1)

and are a form of performance-weighting for the states sn−1.
Ptr(sn | sn−1) are the transition probabilities from state sn−1

to state sn that are needed to sequentially calculate the path
weights in Equation (6) (or Equation (7) or (8)) wherePtr(sn |
sn−1) will be different depending on the weighting used for
P (Tk,n). �. 4. CONCLUSION

In this paper, we considered online (sequential) portfolio se-
lection in a competitive algorithm framework. We constructed
a sequential algorithm for portfolio investment that asymp-
totically achieves the wealth of the best piecewise constant
rebalanced portfolio tuned to the underlying individual se-
quence of price relative vectors. We demonstrated that the re-
gret of this algorithm over the performance of the best piece-
wise constant rebalanced portfolio selection algorithm is at
most (k + 1)(m − 1) ln(n)/2 + k ln(n) + O(k + 1) in the
exponent for any Tk,n, k or n and with no prior knowledge of
Tk,n, k or n. The additional complexity of our algorithm over
the complexity of the static algorithms used in the construc-
tion is linear in data size n.
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