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ABSTRACT

In this paper, an extended algorithm for parameter estimation

of quadratic FM signal is derived by exploring the time di-

versity in the cubic phase (CP) function. The performance of

the proposed algorithm is analyzed in terms of estimate bias

and variance, and compared with other methods. Although

the proposed algorithm employs a fourth-order nonlinearity

which results in higher threshold SNR, it provides a number

of advantages, such as low mean-square error (MSE) for the

estimates at high SNR and simply extension for multicompo-

nent signals. Extension to cubic FM signal is also discussed.

The theoretical analysis is verified by the simulation results.

Index Terms— Parameter estimation, FM signal, statisti-

cal signal processing.

1. INTRODUCTION

In the signal processing literature, considerable attention has

been paid to parameter estimation of the frequency-modulated

(FM) signal from noisy observations. The FM signal can be

found in a number of applications such as radar, sonar, geo-

physics, and biomedicine [1], [2]. This paper focuses on the

quadratic FM signal and also discusses the cubic FM signal.

The most accurate way for analyzing the quadratic FM

signal is the maximum likelihood (ML) estimation. It yields

optimal results but requires a three-dimensional maximiza-

tion, and thus it is computational exhausting. Moreover, if

the objective function is not convex, the maximization is easy

to converge to local maxima. To avoid the multidimensional

search, the suboptimal approaches such as the high-order am-

biguity function (HAF) [1], [3], integrated general ambiguity

function (IGAF) [4], and product HAF (PHAF) [5], are pro-

posed. Recently, a bilinear transform — the CP function was

presented in [2] and [6]. For a quadratic FM signal defined as

s(n) = Aejφ(n) =Aej(a0+a1n+a2n2+a3n3),

− (N − 1)
2

≤ n ≤ (N − 1)
2

, (1)

where A, φ(n), and {ai}3
i=0 are the amplitude, phase and

phase coefficients respectively, and N is odd, the CP func-

tion is presented as

CP(n, Ω) =
∫ +∞

0

s(n + τ)s(n − τ)e−jΩτ2
dτ. (2)

Substituting s(n) in (2) with (1), the result is

s(n + τ)s(n − τ) = A2ej2[φ(n)+(a2+3a3n)τ2]. (3)

From (2) and (3), the CP function will peak at 2(a2 +
3a3n), which is the instantaneous frequency rate (IFR) of (1)

[2], [6]. Once the IFR is obtained, the parameters, a2 and a3,

can be estimated by selecting two different time positions and

solving the resulting equations set. In this paper, we explore

the time diversity in the CP function by using two special time

positions, which are symmetric with respect to origin, i.e.,

one is n and another −n. Although this extension results in

fourth-order nonlinearities, it offers the following advantages:

• low mean-square error (MSE) at high SNR for estimat-

ing a3;

• simple extension to multicomponent signals.

This paper is organized as follows. In Section 2, we present

the algorithm for estimating the quadratic FM signal in two

steps. Section 3 derives the statistical results for the estimate

using the first-order permutation analysis. In Section 4, ex-

tension to multicomponent case is considered. The simula-

tion results are provided to validate the theoretical results in

Section 5. Section 6 focuses on further development. Finally,

conclusions are drawn in Section 7.

2. THE PROPOSED ALGORITHM

Motivated by the CP function, we further exploit the time di-

versity on the basis of the CP function, which forms a fourth-

order nonlinear estimator — the Generalized Cubic Phase (GCP)
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function as

GCPs(n, ω) =
∫ ∞

0

ψ(n, τ)e−jωτ2
dτ, (4)

where ψ(n, τ) = s(n + τ)s(n − τ)s∗(−n + τ)s∗(−n − τ).
Here, we assume n is positive.

Compared between (2) and (4), the significant difference

is the employing nonlinear transform. The first one involves

a bilinear transform and the later employs a fourth-order non-

linearities. In the next paragraph, we will realize the GCP

function in two steps: the nonlinear transform and the quadratic

phase filter.

2.1. The Fourth-order Nonlinear Transform ψ(s)

For an arbitrary signal with phase φ(n), assume that φ1 =
phase[s(n+τ)], φ2 = phase[s(n−τ)], φ3 = phase[s(−n+
τ)], φ4 = phase[s(−n−τ)], and φG = phase[s(n+τ)s(n−
τ)s∗(−n+ τ)s∗(−n− τ)], where phase[.] denotes the phase

extractor. Using the Taylor series expansion, order to M , we

obtain

φ1 + φ2 =
M/2∑
l=0

2φ(2l)(n)τ2l

(2l)!
; (5)

φ3 + φ4 =
M/2∑
l=0

2φ(2l)(−n)τ2l

(2l)!
; (6)

φG =
M/2∑
l=0

2[φ(2l)(n) − φ(2l)(−n)]τ2l

(2l)!
. (7)

Substituting φ(n) with
∑P

i=0 ain
i, where P is the phase

order and letting η(φ) = φ(2l)(n) − φ(2l)(−n) yield

η(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P/2−1∑
v=l

2a2v+1n2v−2l+1(2v+l)!
(2v−2l+1)! P is even;

(P−1)/2∑
v=l

2a2v+1n2v−2l+1(2v+l)!
(2v−2l+1)! P is odd.

(8)

Inserting (8) in (7) we obtain

φG =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P/2∑
l=0

P/2−1∑
v=l

4a2v+1n2v−2l+1τ2l(2v+1)!
(2l)!(2v−2l+1)! P is even;

P−1
2∑

l=0

P−1
2∑

v=l

4a2v+1n2v−2l+1τ2l(2v+1)!
(2l)!(2v−2l+1)! P is odd.

(9)

For a quadratic or cubic FM signal, (9) yields

φG = 4(a1n + a3n
3) + 12a3nτ2, (10)

It can be said that the multilinear transform is to convert the

quadratic and cubic FM signals into a space that, at any given

value of time sets, has a quadratic term in τ and another in-

variant to τ . In particular, the quadratic phase coefficient of

the resulting signal is 12a3n. Hence, once this coefficient is

obtained, the a3 can be then estimated.

2.2. The Quadratic Phase Filter

According to the phase in (10), a quadratic phase filter is ap-

plied to compensate the quadratic phase term in τ in (4). Us-

ing the identity [7]∫ +∞

−∞
e−jτt2dt =

√
π

τ
e−j(π/4), τ > 0, (11)

we obtain that

|GCPs(n, ω)| =
A4

2

√
π

|12a3n − ω| , (12)

will be maximized if ω = 12a3n. Thus, we can estimate a3 if

a distinct peak is detected. Using the nonlinear least squares,

the estimate of a3 is given as

â3 =
arg maxω |GCPs(n, ω)|

12n
. (13)

Directly computing (13) requires about O(N2) operations.

Motivated by the fast implementation of the CP function, eval-

uation of the GCP function can be reduced to O(N log N)
operations using the subband decomposition techniques [5].

3. STATISTICAL ANALYSIS OF THE ESTIMATES

This section analyzes the bias and variance of the a3 estimate

using the first-order permutation method [3], [8]. For brevity,

we use the same notions as in [2]. First, we specify gN (ω)
and δgN (ω) as

gN (ω) = GCPs(n, ω) (in discrete form), (14)

δgN (ω) =
(N−1)/2−n∑

m=0

zvs(n,m)e−jωm2
, (15)

respectively, where zvs approximates the interference terms

containing not more than two noise factors. A number of in-

termediate results are given below:

gN (ω0) ≈ A4K(N/2 − n), (16)

∂gN (ω0)
∂ω

≈ −jA4K
(N/2 − n)3

3
, (17)

∂2gN (ω0)
∂ω2

≈ −A4K
(N/2 − n)5

5
, (18)

δgN (ω0) ≈
N/2−n∑
m=0

zvs(n,m)e−jω0m2
, (19)

∂δgN (ω0)
∂ω

≈ −j

N/2−n∑
m=0

m2zvs(n,m)e−jω0m2
, (20)

where ω0 = 12a3n and K = ej4(a1n+a3n3). Then we derive

α ≈ −8A8(N/2 − n)6

45
, (21)
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β ≈ −2A4(N/2 − n)[Im{Γ}], (22)

where

Γ ≈ K

N/2−n∑
m=0

(m2 − (N/2 − n)2

3
)z∗vs(n,m)ejω0m2

. (23)

Using (21) and (22), the first-order approximation for δω is

δω ≈ − 45 · Im{Γ}
4A4(N/2 − n)5

. (24)

Its expected value, the bias of the a3 estimate, is approxi-

mately zero (according to the first-order approximation). Fol-

lowing (23), expectations E{ΓΓ∗} and E{ΓΓ} can be written

as

E{ΓΓ∗} ≈ 8
45

A4δ2(2A2 + 3δ2)(N/2 − n)5, (25)

E{ΓΓ} ≈ 1
90

A6δ2(N/2 − 3n)ϕ(n,N)u(N/2 − 3n),

(26)

where ϕ(n,N) = (2N4−33nN3+82n2N2+52n3N−8n4)
and u(.) denotes the unit step function.

Combining (21), (22), (25), and (26) yields

E{(δa3)2} ≈ 45
576 · SNR · n2(N/2 − n)5

·
[
(2 +

3
SNR

)−

(N/2 − 3n)ϕ(n,N)
16(N/2 − n)5

u(N/2 − 3n)

]
,

where SNR = A2/δ2. It is shown that the variance of â3

depends on the values of N, SNR and n. For a given N and

SNR, numerical study shows that n ≈ 0.2291N gives the

minimal variance of â3 at high SNR. When n = 0.2291N ,

the theoretical MSE of the a3 estimate is

E{(δa3)2} ≈ 1582.5 + 3060.7
SNR

N7SNR
. (27)

Table 1 summarizes the theoretical MSE for the a3 esti-

mate using different methods at high SNR and the Cramér-

Rao lower bound (CRLB). From the listed in the table, the

GCP function has the lowest MSE for the a3 estimate at high

SNR, which is about 32.54% and 43.18% lower than the CP

function and the HAF, respectively. On the other hand, the

fourth-order nonlinearities in the GCP function, which is higher

than that of the CP function, give rise to higher value in the

SNR−2 terms and thus result in greater MSE at low SNR.

As to other methods, the PHAF is robust to the noise and

cross-terms, but it may lead to a wrong estimation [9] in cer-

tain cases. The IGAF is statistically efficient for the quadratic

FM signal, however, it requires a two-dimensional search and

is hence computationally demanding [4]. The polynomial

Wigner-Ville distribution (PWVD) is another method used for

analyzing polynomial phase signals [10]. For the a3 estimate,

the GCP function outperforms the PWVD since the PWVD

has sixth-order nonlinearities.

Table 1. Comparisons of the asymptotic MSE (AMSE)

among different methods for the a3 estimate at high SNR

GCPF CPF HAF CRLB

AMSE 1582.5
N7SNR

2038
N7SNR

2187
N7SNR

1400
N7SNR

4. MULTICOMPONENT CASE

It has been shown in [11] that for multicomponent signals the

distinct cross-terms or spurious peaks occur producing prob-

lem with identification of parameters of signal components.

The proposed algorithm can be simply extended for multi-

component case. To discern the auto-terms from the cross-

terms or possible spurious peak, it is useful to make use of

the time dependence. From (12), it is clear that the auto-

term is linearly related to the time position, i.e. ω = 12a3n.

However, the cross-terms have not this type of time depen-

dence. By using the spectral scaling technique introduced in

the PHAF [5], the product form of GCP functions is defined

as

PGCP(ω; n1) =
L∏

l=1

GCPs(nl,
n1

nl
ω). (28)

It can be said in (28) that the spectral scaling ensures that

the peaks are properly aligned at ω = 12a3n1. Thus the

later multiplication amplifies the auto-terms and weakens the

cross-terms in the product.

5. SIMULATIONS

For straight comparisons with other methods, the tested signal

is the same quadratic FM signal in [1] and [2]. The SNR is

incremented in 1-dB interval between 0 and 20 dB, the sam-

pling interval is 1, and the number of samples N = 257. The

selected parameters are A = 1, a3 = π10−5, a2 = −π10−3,

a1 = 0.3π, and a0 = 0. For each SNR, 1000 runs of the

Monte Carlo simulations are performed.

Fig. 1 plots the measured, theoretical MSE of the a3 esti-

mate. It is evident that the theoretical MSE matches the the-

oretical results at SNR above 3dB, whereas a threshold effect

can be observed at around 3dB. Fig. 2 highlights the mea-

sured MSE using different methods at high SNR, i.e., above 3

dB. The GCP function has lower MSE than the HAF method

at almost all SNR and the CP function at SNR above 3dB.

Thus, it can be said the derived simulation results agree with

the theoretical analysis.

6. DISCUSSION

The GCP function can be further extended for cubic FM sig-

nal. From (10), the GCP function can estimate a3 no matter

whether a4 exists. To analyze the cubic FM signal, we can
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first estimate a3 using (10), then dechirp the sampled sig-

nal using the estimated a3, and finally estimate the a4 us-

ing the following equation as GCPm(n, ω) =
∫ +∞
0

sd(n +
τ)sd(n − τ)s∗d(τ)s∗d(−τ)e−jωτ2

dτ , where sd represents the

dechirped signal. Compared with other methods for cubic FM

signal, the proposed algorithm in this paper involves fourth-

order nonlinearities only that is lower than the sixth-order

nonlinearities in the higher-order phase function (HPF) [2]

and PWVD [10], and the eighth-order nonlinearities in the

HAF-based method. Thus, it allows to estimate the cubic FM

signal at low SNR.

7. CONCLUSION

An algorithm for parameter estimation of a noisy quadratic

FM signal is proposed in this paper. It further explores the

time diversity in the CP function and employs a fourth-order

nonlinear transform. Statistical analysis shows that the vari-

ance of the a3 estimate is only 13.04% higher than the CRLB

at high SNR. The extensions to multicomponent case and cu-

bic FM signal are also discussed. The simulation results have

been provided and show adherence to the theoretical analy-

sis. In the future, we will study the error propagation effort

throughout the estimation both in theory and in simulation.
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Fig. 1. (a) The theoretical results, measured MSE and the

CRLB; (b) Comparisons of the measured MSE using different

methods for high SNR
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