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ABSTRACT

This paper is concerned with the geolocation of a scanning
emitter from time of intercept measurements of the rotating
emitter beam. The problem of estimating the emitter loca-
tion is cast into a pro le likelihood estimation framework by
treating the unknown scan rate of the emitter as a nuisance
parameter. A grid search technique is developed for initial-
izing iterative pro le likelihood estimation algorithms. The
grid spacing is determined from an estimate of the Lipschitz
constant of the pro le likelihood cost function. Maxima of di-
rectional derivatives of the cost function are tted to aWeibull
distribution to estimate the Lipschitz constant. The perfor-
mance of the pro le likelihood estimator is illustrated with
simulation examples.

Index Terms— Passive localization, pro le likelihood es-
timation, grid search methods, extreme value theory.

1. INTRODUCTION

Passive emitter localization is an important research problem
with many civilian and military applications such as mobile
user localization in wireless mobile communication systems,
and target location and tracking in electronic warfare systems.
Several techniques have been developed for passive localiza-
tion of an emitter, each with certain advantages and disadvan-
tages. This makes it very dif cult to identify a single best
localization approach for all applications. Consequently the
localization research has mainly focused on the development
of high-performance techniques tailored for particular appli-
cations. Most passive localization techniques utilize angle of
arrival (bearings), time of arrival, time difference of arrival
(TDOA), Doppler shift and received signal energy measure-
ments. Hybrid approaches employing a combination of these
are also available.
Passive TDOA localization techniques are well suited for

localization of uncooperative emitters. However the main
limitation of TDOA techniques is the requirement of high-
precision time of arrival measurements coupled with highly
synchronized clocks at multiple receivers. Furthermore the
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Fig. 1. Scan-based geolocation where the tk correspond to
time instants the emitter beam is intercepted by UAV re-
ceivers.

receivers are required to detect the same signal from signif-
icantly different angles, often along sidelobes of the signal.
The scan-based localization technique, which is the passive
localization technique considered in this paper, does away
with these limitations and is particularly effective for me-
chanically scanning radars, whose azimuth beamwidth is nar-
row [1].
This paper presents a pro le likelihood estimator for scan-

based emitter localization for unknown scan rates. The pro-
posed method is well suited for geolocation of radars per-
forming circular or sector scans [2]. The unknown emitter
scan rate is treated as a nuisance parameter and is eliminated
by the pro le likelihood method. Grid search is used for ini-
tializing iterative estimators where the grid spacing is deter-
mined by estimating the Lipschitz constant of the pro le like-
lihood cost function.

2. PROBLEM DEFINITION AND ASSUMPTIONS

Fig. 1 shows an illustration of a typical operational scenario
where the scan-based localization technique is used to locate
a stationary emitter scanning its main antenna beam at a con-
stant scan rate ω. The main beam sweeps across a number of
RF receivers on-board UAVs equipped with GPS receivers.
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The RF receivers sense the incoming emitter signals (modu-
lated by the antenna beam pattern) and pass the measured data
to a processing unit, which estimates the scan intercept times
at the peaks of the rotating beam. The instantaneous UAV
positions associated with the beam peaks are also recorded.
The main underlying idea of the scan-based localization

technique is to deduce the emitter location by exploiting the
constraint imposed on the emitter location by the uniform ro-
tation of the antenna beam. This paper extends the scan-based
localization method developed in [1] to estimate the emitter
location from scan intercept time measurements at recorded
receiver positions, dispensing with the requirement of prior
knowledge of the scan rate. This is particularly useful in sce-
narios where the emitter is only performing a sector scan [2],
which complicates the problem of scan rate estimation.
We assume that the scan intercept time measurements tk

recorded at receiver positions pk are subject to additive white
Gaussian noise with zero mean and variance σ2

t . At least
N = 4 receivers are necessary to estimate the unknown para-
meters. We assume that the receivers and the emitter do not
form a circle as this prevents unique estimation of the emitter
location.

3. PROFILE LIKELIHOOD ESTIMATOR

The information about the emitter location p = [px, py]T

(here T denotes transpose) and scan rate is carried by inter-
cept time differences t1i = ti − t1. The likelihood function
of τ = [t12, t13, , · · · , t1N ]T is given by its conditional joint
probability density function:

f(τ |p, ω) =
1

(2π)(N−1)/2|Σ|1/2

× exp

{
−1

2
(τ − t(p, ω))T

Σ
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}
(1)

where t(p, ω) is the mean vector of τ
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and Σ is the (N − 1)× (N − 1) covariance matrix of τ

Σ = E{nT n} = σ2
t Q. (3)

Here n = [n12, n13, . . . , n1N ]T is the intercept time differ-
ence noise vector in τ = t(p, ω) + n, and

Q =

⎡
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Maximizing the log-likelihood function over [p, ω] gives

[p̂ML, ω̂ML] = arg min
p, ω

JML(p, ω) (4)

where p̂ML and ω̂ML are the ML estimates of the emitter lo-
cation and the scan rate, respectively, and JML(p, ω) is the
ML cost function:

JML(p, ω) = eT (p, ω)Σ−1e(p, ω), e(p, ω) = τ−t(p, ω).
(5)

The ML estimation problem does not have a closed-form
solution and requires numerical search techniques such as the
Gauss-Newton (GN) algorithm. Due to the nonlinear nature
of the ML cost function the GN algorithm can get stuck in lo-
cal minima or become unstable if it is not initialized appropri-
ately. Grid search, which is a non-iterative search technique
over [p, ω] in 3D space, can be prohibitively expensive.
It is desirable to reduce the dimension of the search space

by eliminating nuisance parameters. In scan-based geoloca-
tion the scan rate ω can be considered a nuisance parameter.
To eliminate ω we employ the pro le likelihood method. The
pro le likelihood estimate of the emitter location is given by

p̂ = arg min
p

Ĵ(p), Ĵ(p) = min
ω

JML(p, ω). (6)

To minimize JML(p, ω) over ω, consider

∂JML(p, ω)

∂ω
=

2

σ2
t ω2

vT (p)Q−1

(
τ − 1

ω
v(p)

)∣∣∣∣
ω=ω̂

= 0

(7)
which yields

ω̂ =
vT (p)Q−1v(p)

vT (p)Q−1τ
. (8)

Substituting ω̂ into JML(p, ω) gives

Ĵ(p) =

(
τ − 1

ω̂
v(p)

)T

Σ
−1

(
τ − 1

ω̂
v(p)

)
(9a)

= τT
Σ
−1τ − (vT (p)Σ−1τ )2

vT (p)Σ−1v(p)
. (9b)

The inverse of the covariance matrix can be written as

Σ
−1 =

1

σ2
t

(
I − 1

N

)
(10)

where I is the identity matrix and 1 is the matrix of ones.
After substituting (10) into (9b) and carrying out some vec-
tor/matrix algebra, we nally obtain

Ĵ(p) =
1

σ2
t

(
‖τ‖2 − τ2

s

N
−
(
τT v(p)− τsvs(p)/N

)2
‖v(p)‖2 − v2

s(p)/N

)
(11)

where τs and vs are the sums of the elements of τ and v(p),
respectively.
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Noting that the minimization of the pro le likelihood cost
function is not affected by σ2

t and the rst two terms within
the brackets, the cost function Ĵ(p) can be simpli ed to

ĴS(p) = −
(
τT v(p)− τsvs(p)/N

)2
‖v(p)‖2 − v2

s(p)/N
(12)

which has a complexity of O(N) compared with O(N2) for
Ĵ(p) in (9b). This complexity reduction is especially impor-
tant for grid search.
The pro le likelihood estimator does not lead to a closed-

form solution either. Thus a numerical search technique such
as GN, the Nelder-Mead simplex method [3] or grid search
is required. The nonconvex topology of the pro le likelihood
cost function (i.e., the existence of local minima) necessitates
the availability of good initial guesses for iterative techniques
such as the GN algorithm. Grid search can be employed to
generate an initial guess for iterative search algorithms.

4. GRID SEARCH FOR PROFILE LIKELIHOOD
ESTIMATOR

Supposing that the search region for the emitter is known a
priori, the grid search for the pro le likelihood estimator in-
volves evaluation of ĴS(p) over discrete points on a 2D grid
and then selection of the grid point with the minimum cost
function value as the emitter location estimate. While grid
search avoids convergence dif culties associated with itera-
tive techniques such as the GN algorithm, it can suffer from
high complexity.
In order to ensure that the global minimum is not missed,

the grid points must be separated by ε/M
√

2 [4] where ε is
the required accuracy for determining the global minimum
andM is the Lipschitz constant of ĴS(p) satisfying

|ĴS(s1)− ĴS(s2)| ≤M‖s1 − s2‖ (13)

for all s1 and s2 within the search region.
The Lipschitz constant of ĴS(p) needs to be estimated

to determine the spacing of the grid points. An estimate of
the Lipschitz constant M can be obtained by tting largest
directional derivatives of ĴS(p) to a reverse Weibull distrib-
ution [5]. The location parameter of the reverse Weibull dis-
tribution then gives an estimate of M . Under certain mild
conditions, the maxima of directional derivatives were shown
to converge to the Type III extreme value distribution (reverse
Weibull) in [5].
The Lipschitz constant estimation procedure is summa-

rized below:

1. SampleD randomly distributed points s1, . . . , sD over
the region of interest;

2. Evaluate directional slopes at sampled points:

Mi =

∥∥∥∥∥∂ĴS(si)

∂p

∥∥∥∥∥ , i = 1, . . . , D.
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Fig. 2. Simulated localization scenario.

3. Find the maximum of {M1, . . . , MD}:

m = max
i

Mi.

4. Repeat steps 1–3 L times to producem1, . . . , mL;

5. Fit a three-parameter reverseWeibull distribution tom1,
. . . , mL;

6. The location parameter estimate of the reverse Weibull
distribution gives an estimate of the Lipschitz constant.

We use a moment estimation method for determining the lo-
cation parameter of the reverse Weibull distribution [6].

5. SIMULATION EXAMPLES

The simulated geolocation scenario is depicted in Fig. 2. Five
UAVs at p1 = [−1, 18]T , p2 = [0, 0]T , p3 = [10, 10]T ,
p4 = [20,−2]T , and p5 = [25, 21]T attempt to locate a
scanning emitter at p = [10, 100]T by utilizing scan inter-
cept time measurements. The scan rate of the emitter, which
is unknown by the UAVs, is ω = π/2 rad/s.
The rst simulation studies the local minima of the pro le

likelihood cost function ĴS(p). The scan time intercept mea-
surement noise standard deviation is set to σt = 10−3 s. Sev-
eral locations were used as an initial guess for the pro le like-
lihood estimator when implemented as a Nelder-Mead sim-
plex search algorithm. For a single realization of the scan time
intercept measurements the following minima on the cost func-
tion surface were discovered:

p̂1 = [12.9349, 17.7397]T ĴS(p̂1) = −0.0271

p̂2 = [44.1425,−254.2713]T ĴS(p̂2) = −0.0288

p̂3 = [10.5358, 107.6101]T ĴS(p̂3) = −0.0289
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Fig. 3. Cost function grid.

Out of these p̂3 is the global minimum corresponding to the
emitter location and the other two are local minima. The ex-
istence of undesirable local minima increases the signi cance
of good initial guess selection.
We use the grid search algorithm proposed in Section 4 to

obtain an initial guess for the Nelder-Mead pro le likelihood
estimator. The grid search region (region of interest) was cho-
sen to be [−30, 30]× [30, 150]. For one realization of the scan
time intercept measurements with σt = 10−3 s, the Lipschitz
constant estimate obtained from Weibull t using D = 20
and L = 20 was M̂ = 0.0066, which for ε = 10−2 gives a
grid spacing of ε/M

√
2 = 1.0635. The resulting grid search

estimate was p̂G = [10.4136, 107.6366]T compared with the
pro le likelihood estimate p̂ = [10.5358, 107.6101]T . Ini-
tializing the pro le likelihood estimator to the grid search es-
timate would require only a few iterations of the search algo-
rithm to nd the nal estimate p̂. Fig. 3 shows a plot of ĴS(p)
over the grid points obtained from the Lipschitz constant es-
timate.
To assess the performance of the pro le likelihood estima-

tor we conducted Monte Carlo simulations. Fig. 4 shows the
MSE and CRLB curves for 5000 simulation runs. The pro-
le likelihood estimator was implemented as a Nelder-Mead
simplex search algorithm and initialized to the grid search es-
timate. The pro le likelihood estimator is seen to perform
well for σt < 2 ms. As the noise becomes larger the MSE
performance begins to deviate from the CRLB.

6. CONCLUSION

A scan based pro le likelihood estimator was proposed for
passive emitter localization. The developed estimator does
not require explicit estimation of the scan rate of the emit-
ter antenna. Being a nonlinear least-squares estimator, the
pro le likelihood estimator does not have a closed-form so-
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Fig. 4. MSE performance.

lution, thus requiring the use of an iterative numerical search
algorithm. The existence of local minima in the pro le likeli-
hood cost function necessitates a good initial guess. Since no
closed-form solutions are available even for suboptimal es-
timation, a grid search technique was employed to initialize
iterative search algorithms. The grid spacing was determined
from an estimate of the Lipschitz constant of the cost func-
tion using maxima of directional slopes tted to the reverse
Weibull distribution. The performance of the developed algo-
rithm was demonstrated and compared with the CRLB for the
joint emitter and scan rate estimation problem.
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