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ABSTRACT

We develop a q-Expectation Maximization (q-EM) simulated an-
nealing method for parameter estimation. The q-EM algorithm is a
one-parameter generalization of normal Expectation Maximization
(EM) algorithm based on Tsallis entropy. By incorporating the sim-
ulated annealing method, we propose the q-Deterministic Annealing
Expectation Maximization (q-DAEM) algorithm. Given the inherent
connection between a physical annealing process and statistical me-
chanics, we show that the proposed algorithm actually minimizes a
counterpart of the free energy in statistical mechanics by controlling
an effective temperature. Simulations of mixed Gaussian parameter
estimation show that the proposed method is much less initialization-
dependent than the standard EM algorithm and converges dramati-
cally faster than the DAEM algorithm.

Index Terms— Expectation Maximization, Simulated Anneal-
ing, DAEM, Tsallis Entropy, Estimation.

1. INTRODUCTION

Finite mixture model is a exible and powerful probabilistic tool
for statistical learning from incomplete data, with applications such
as probability density estimation, clustering, classi cation, and data
summarization [1]. The EM algorithm developed by Dempster [2]
is a general method to estimate the parameters of a stochastic model
from incomplete data. The tting of mixture models by maximizing
the likelihood is a typical example application of EM algorithms.
The standard EM algorithm is highly sensitive to initialization and
may converge to a local maximum. A natural solution is to start from
multiple random initializations and choose the nal estimate with the
highest likelihood [3]. Many other adaptations and extensions of the
EM approach have been proposed, including the component-wise
EM [1] and the split-and-merge EM [4]. Recently, other powerful
algorithms such as the genetic algorithm (GA) [5] and the simulated
annealing (SA) algorithm [6] are combined with the EM algorithm
to combat the issue of local maxima and reduce the sensitivity to
initializations.

As known, SA is a stochastic technique originated in the study of
condensed matter physics. The annealing denotes a physical process
where a solid in a heat bath is rst heated by increasing the tem-
perature of the heat bath to a maximum value at which all particles
in the solid randomly arrange themselves in the liquid phase, and
then cooled down by slowly lowering the temperature of the heat
bath. In this way, all particles arrange themselves in the low en-
ergy ground state of a corresponding lattice. The associated special
entropy-changing pattern motivates people to apply simulated an-
nealing method solve statistical optimization problems in [7], where
it leads to a greedy search that accepts all changes leading to im-
provements. However, different from GA, SA allows the acceptance
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of changes leading to temporary worse solutions with certain proba-
bility. By controlling the system parameters such as temperature, SA
can nd the optimal solution in non-convex cases with high proba-
bility, and it has been applied to many problems such as the traveling
salesman problem [9] and gene clustering [10].

In addition, a deterministic annealing EM (DAEM) algorithm is
proposed in [11], with dramatically improved performance over EM.
In [12], a generalized DAEM based on non-extensive statistical me-
chanics is proposed to further improve the performance. Motivated
by the success of Tsallis information theory in the non-extensive sta-
tistical physics [13, 14], we have developed the q-EM algorithm in
the previous work [15] for joint channel estimation and detection.
The q-EM algorithm is a one-parameter generalization of the stan-
dard EM algorithms. By controlling the parameter q, we can achieve
faster estimation convergence and better detection performance. In
this paper, we combine the q-EM algorithm and the simulated an-
nealing method to solve nite mixture estimation problems. We in-
vestigate the relationship between q-EM and statistical mechanics,
and propose a new algorithm named q-DAEM. Different from the
DAEM in [12], we explore the extra freedom offered by the parame-
ter q and apply different constraints. We compare the performance
among the standard EM, DAEM, and q-DAEM for nite mixture
estimation problems. We show that the proposed q-DAEM has a su-
perior performance over others with fast convergence and less sen-
sitivity to initialization.

The rest of the paper is organized as follows. In Section II, we
brie y describe the nite mixture model and the standard EM algo-
rithm. In Section III, we introduce the q-DAEM algorithm based on
the maximization of Tsallis entropy. In Section IV, statistical me-
chanics is connected to the proposed q-DAEM. In Section V, simu-
lation results are shown to compare the standard EM, DAEM, and
q-DAEM algorithms. Conclusions are drawn in Section VI.

2. THE FINITE MIXTURE MODELS AND EM
ALGORITHM

In this section, we brie y introduce the nite mixture model and the
standard EM algorithm.

2.1. The Finite Mixture Model
Let Y = [Y1, . . . , Yd]T be a d-dimensional random variable, with
y = [y1, . . . , yd]T representing a sample drawn from Y. The mix-
ture model can be written as

p(y|θ) =
M�

m=1

πmp(y|θm) (1)

where p(y|θ) is the probability density function (PDF) conditional
on θ, π1, . . . , πM are the mixing probabilities with

�M

m=1 πm = 1,
and θm is the conditional parameter for the mth component, m =
1, · · · , M . Let θ = {θ1, . . . , θM , π1, . . . , πM} be the complete set
of parameters needed to specify the mixture. Let�y = {y(1), . . . , y(n)}
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be the samples of variant Y. To understand how each sample (y(i))
is generated, we assume an auxiliary discrete random variable z,
which takesM possible values with probability mass [p(z = z1) =

π1, . . . , p(z = zM ) = πM ]. To generate y(i), we rst generate a
sample of z(i) based on the above distribution. If z(i) = zm, we
draw a sample of y(i) based on p(y|θm), m = 1, . . . , M . When y
is the received signal in anM -ary digital communication system, z
bears physical meaning, and it is actually theM -ary signal constel-
lation point. In such cases, z is called the hidden data. Let us denote
the unknown hidden data associated with�y as�z = {z(1), . . . , z(n)}.
The Maximum log-Likelihood (ML) estimation of θ with the ob-
served data �y is given by �θML = argmaxθ ln p(�y|θ).
2.2. The standard EM algorithm
Given the high computational cost of ML algorithms, the standard
EM algorithm was proposed in [2] as an ef cient iterative solution.
The EM algorithm consists of two major steps: Expectation evalua-
tion (E-step), and expectation maximization (M-step). At each iter-
ation, the E-step is with respect to the unknown hidden data, condi-
tional on the current estimated value of the unknown parameters and
the observations, as shown below. The M-step then provides a new
estimate of the unknown parameters that maximizes the expectation
given in the E-step, as shown below. These two steps are iterated
until certain convergence criteria are satis ed.

E-Step: Q(θ, θ(k)) = E�z[ln p(�y,�z|θ)|�y, θ(k)].

M-Step: θ(k+1) = argmaxθQ(θ, θ(k)).

If the samples of Y are independent, the conditional expectation
can be written as

Q(θ, θ(k)) =
n�

i=1

M�
m=1

w(i)
m ln p(y(i)|z(i), θ) (2)

where w
(i)
m = p(z(i) = zm|y(i), θ(k)) can be calculated by

w(i)
m =

π
(k)
m p(y(i)|θ(k)

m )�M

j=1 π
(k)
j p(y(i)|θ(k)

j )
. (3)

Here we see that the EM algorithm is highly dependent on the initial-
ization of θ(k). If the initialization is not close to the global optimum,
it may converge to a local one.

3. THE Q-EM BASED SIMULATED ANNEALING

¿From Eq. (3), we see that the conditional probability of �z may not
be calculated accurately since θ(k) itself is an unknown quantity to
estimate. Given that we have no prior knowledge about p(�z|�y, θ(k)),
we can apply the principle of maximum entropy [16] to have an esti-
mated version, which is deployed in the deterministic annealing EM
(DAEM) algorithm [11]. Here, we brie y review the key ideas of
DAEM, and then derive the non-extensive DAEM algorithm, which
we call q-DAEM. Speci cally, the conditional probability p(�z|�y, θ)
in DAEM algorithm is determined by solving the following entropy
maximization problem:

max H(p) = − � p(�z|�y, θ) ln p(�z|�y, θ)d�z
s. t.

�
p(�z|�y, θ)d�z = 1

− � p(�z|�y, θ) ln p(�y,�z|θ)d�z = U

(4)

To solve this problem, we use the Lagrangian multiplier method.
In particular, we de ne

J(p) = H(p)+β(U+

�
p(�z|�y, θ) ln p(�y,�z|θ)d�z)+λ(1−

�
p(�z,�y|θ)d�z),

where β and λ are the Lagrange multipliers. By letting ∂J
∂p

= 0, we
have the solution [11]:

p(�z|�y, θ) =
p(�y,�z|θ)β�
�z p(�y,�z|θ)β

. (5)

The DAEM differs from the standard EM algorithm by using the
probability p(�z|�y, θ) calculated in Eq. (5) instead of in Eq. (3). By
controlling the β from a small value to one, we obtain the determin-
istic annealing process of EM [11].

Motivated by the successful applications of non-extensive en-
tropy in long-range interaction physics [13], we have applied the
concept to the joint estimation and detection problem in [15]. In this
paper, we extend the application to the mixture model estimation
problem. Different from [15], there is no feedback from a decoder
and the observed data cannot be treated as a hidden Markov process.
In addition, as a major modi cation over DAEM, we determine the
conditional probability p(�z|�y, θ) by maximizing the Tsallis entropy
[13] instead of the traditional Shannon entropy:

max Hq(p) = − 1−
�

p(�z|�y,θ)qd�z
1−q

s. t.
�

p(�z|�y, θ)d�z = 1

− � p(�z|�y, θ)qlnq(p(�y,�z|θ))d�z = Uq

(6)

where
lnq(x) ≡ x1−q − 1

1− q
,

lnq(
y

x
) = xq−1[lnq(y)− lnq(x)],

limq→1lnq(x) = ln(x),

and Uq is a normalization constant. The function lnq(x) is a de-
formed logarithm function and is monotonic increasing with x. Let
us de ne Jq(p) as

Jq(p) = Hq(p) + β

�
Uq +

�
p(�z|�y, θ)q lnq(p(�y,�z|θ)d�z

�

+ λ

�
1−

�
p(�z|�y, θ)d�z

�
, (7)

then we have

∂Jq(p)

∂p
=

� �
q

1− q
pq−1 + βqpq−1 lnq p(�y,�z|θ)− λ

�
d�z.

By letting ∂Jq(p)/∂p = 0, we have

p(�z|�y, θ) =
expq(β lnq p(�y,�z|θ))

Z
(8)

where
expq(x) ≡ (1 + (1− q)x)

1
1−q

† , (9)

Z =

�
expq(β lnq p(�y,�z|θ))d�z =

�
(1− q)λ

q

� 1
1−q

, (10)

and (x)† means that (x)† = 0 if x < 0, otherwise (x)† = x. When
q, β → 1, Z → p(�y|θ), which is the likelihood function.

After we obtain the estimated p(�z|�y, θ), we are ready to describe
the q-DAEM algorithm. Let us denote the q-expectaion as

E(q)
x [g(x)] ≡

�
p(x)qg(x)dx, (11)

and the algorithm is as follows:
1) Set β > 1 and q > 1;
2) E-Step: Q(θ, θ(k)) = E

(q)
�z [lnq p(�y,�z|θ)|�y, θ(k)];

3)M-Step: θ(k+1) = argmaxθQ(θ, θ(k));
4) Decrease q: if q > 1, go back to Step 2;
5) If the convergence criteria are not satis ed, decrease β: if β > 1,
repeat the above procedures; otherwise stop.
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In our experiments, q and β decrease according to q(k) = 1 +

q(1)e
− 10k

Lq and β(n + 1) = 1 + β(n)e
− 5n

Lb , where k and n are
the counter index for the inner loop and the outer loop, respectively,
Lq is the maximum allowed number of loops for q, and Lb is the
maximum allowed number of loops for β. We also set q(1) = 10,
β(1) = 5, Lq = 20, and Lb = 10 for our simulations.

4. CONNECTIONS WITH STATISTICAL MECHANICS

In the previous section we proposed the q-DAEM algorithm with-
out an intuitive explanation why it works well. In this section, we
will show that given the inherent connection between a physical an-
nealing process and statistical mechanics, the proposed algorithm
actually minimizes a counterpart of the free energy in statistical me-
chanics by controlling an effective temperature. It will be proved
that minimizing the free energy counterpart implies the maximiza-
tion of likelihood.

Statistical mechanics is an application of statistics [16], dealing
with the motions of a large population of particles or objects that
are subjected to external forces. It provides a framework for relat-
ing the microscopic properties of individual atoms and molecules to
the macroscopic properties of materials that can be observed. This
ability to make macroscopic predictions based on microscopic prop-
erties is the main asset of statistical mechanics, and the theories are
governed by the laws of thermodynamics through entropy. Here, the
principles of statistical mechanics are applied to estimation prob-
lems, in which we observe the data (macroscopic) that are generated
by certain hidden data (microscopic) with a probabilistic model. The
parameters to estimate fully describe the statistical behavior.

Taking the deformed logarithm on both sides of Eq. (8), we have

lnq p(�z|�y, θ) = lnq

�
expq(β lnq p(�y,�z|θ))

Z

�

= Zq−1 (β lnq p(�y,�z|θ)− lnq Z) , (12)

which leads to

− 1

β
Z1−q lnq p(�z|�y, θ) = − lnq p(�y,�z|θ) +

1

β
lnq Z. (13)

Taking the conditional q-expectation over the conditional probability
of�z on both sides of Eq. (13) and applying Eq. (10), we obtain

W (θ) = Uq − (1− q)λ

qβ
Hq(θ)

= Uq − TqHq(θ) (14)

where Tq = (1−q)λ
qβ

is de ned as an effective temperature, and

W (θ) ≡ − 1

β

�
p(�z|�y, θ)q lnq Zd�z (15)

Hq(θ) = −
�

p(�z|�y, θ)q lnq p(�z|�y, θ)d�z. (16)

Here, we see that Eq. (14) has a similar structure to the statistical
mechanics modeled by E = U − TS [11], where E is the free
energy, U is the total energy, T the temperature, and S is the system
entropy. At equilibrium, the thermodynamic system settles into a
con guration that minimizes its free energy. With this motivation,
we consider the minimization of W (θ) by controlling the effective
temperature Tq . To solve this, we derive an iterative algorithm. Let
us denote the current estimation as θ(k) and take the conditional q-
expectation given the observed data y on both sides of Eq. (13), we
obtain

W (θ(k)) = Uq(θ, θ(k))− TqHq(θ, θ(k)) (17)

where

Hq(θ, θ(k)) = −
�

p(�z|�y, θ(k))q lnq p(�z|�y, θ)d�z

Uq(θ, θ(k)) = −
�

p(�z|�y, θ(k))q lnq p(�y,�z|θ)d�z (18)

W (θ(k)) = − 1

β

�
p(�z|�y, θ(k))q lnq Zd�z

We now show by the following theorem that the proposed q-
DAEM algorithm can monotonically drive downW (θk), which im-
plies that the likelihood is increased over iterations and reaches max-
imum if we let β and q approach one in a well-controlled manner.

Theorem 1 Given θ(k) and θ(k+1) as a value of θ that minimizes
Uq(θ, θ(k)), we have W (θ(k+1)) ≤ W (θ(k)), where the equality
holds if and only ifU(θ(k+1), θ(k)) = U(θ(k), θ(k)) and p(�z|�y, θ(k+1)) =

p(�z|�y, θ(k)).

Proof:

ΔW (θ) ≡ W (θ(k+1))−W (θ(k))

= (Uq(θ
(k+1), θ(k))− Uq(θ

(k), θ(k)))

+ Tq(−Hq(θ
(k+1), θ(k)) + Hq(θ

(k), θ(k)))

≤ 0

where we used the fact that

− Hq(θ
(k+1), θ(k)) + Hq(θ

(k), θ(k))

=

�
p(�z|�y, θ(k))q(lnq p(�y|�z, θ(k+1))− lnq p(�y|�z, θ(k)))d�z

=

�
p(�z|�y, θ(k)) lnq

p(�z|�y, θ(k+1))

p(�z|�y, θ(k))
d�z

≤ 0,

which is based on the property of the q-relative entropy proved in
[14]. The equality holds if p(�z|�y, θ(k+1)) = p(�z|�y, θ(k)).

Based on Eq. (10), we see that when both β and q approach
one, Z approaches the likelihood p(�y|θ). Given this fact and the
last equation in Eq. (18), we see that the decreasing of W (θ(k))
is caused by the increasing of likelihood. According to the above
theorem, since in our proposed q-DEAM algorithm the condition
Uq(θ

(k+1), θ(k)) ≤ Uq(θ
(k), θ(k)) is guaranteed at the M-step, the

value ofW (θ(k)) will be decreased while the likelihood is increased
over iterations. The convergence speed is controlled by both β and
q, which together de ne Tq that is an analogy to the temperature in
the physical annealing statistical mechanics.

5. SIMULATIONS

In the simulation, the mixture model is given by p(y|θ) = 0.2N(−2, 1)+

0.3N(4, 0.2) + 0.5N(8, 1) where N(μi, σ
2
i ) = 1√

2πσ2
i

e
−

(y−μi)
2

2σ2
i ,

and the parameters to estimate are θ = {π = [0.2, 0.3, 0.5], μ =
[−2, 4, 8], σ2 = [1, 0.2, 1]}. For each algorithm in comparison,
we start from the same initialization and compare certain conver-
gence criteria, which will be de ned shortly. Here, we adopt the
mean squared error (MSE) between the estimated value and the real
value to quantify the estimation process. Let us denote the MSE as
ε = E ‖ θ̂ − θ ‖2. We assume that the convergence is achieved
when ε ≤ δ, with δ = 0.1. It should be noted that determining
convergence in this way may not be practical when the exact value
for θ is not known. In such case, we may use the mean squared error
between the adjacent iterations. The convergence ratio is calculated
as the percentage of successful estimations among the total experi-
ments. The convergence speed is de ned as the average number of
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Table 1. Comparison of EM, DAEM, q-DAEM
Performance EM DAEM q-DAEM

Convergence Ratio 42.3% 69.7% 72.1%
Convergence Speed 53.1 93.5 14.0
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Fig. 1. The convergent speed comparison
iterations needed to achieve convergence: Sv =

�N
i=1 Ci

N
, where N

is the total number of experiments and Ci is the actual number of
iterations executed to achieve convergence at the ith experiment.

For DAEM algorithm, we start the β from 0.1 with the increas-
ing rule as β = β × 1.2 [11]. For each experiment, we start from
an initialization of σ2 = [1, 1, 1], π = [1/3, 1/3, 1/3], and μ =
[μ1, μ2, μ3] that is randomly drawn from a Gaussian distribution of
N(1, 3). The total number of experiments is 5000, where 300 sam-
ples are drawn from the mixture Gaussian model in each experiment.
The maximum number of iterations is limited to 200.

The simulation results are summarized in Table 1, where we see
that q-DAEM has the highest convergence ratio and the fastest con-
vergence speed. With DAEM, the convergence speed is a slower
than that of the standard EM, since the cooling temperature should
be slowly decreased in a normal annealing process. However, with
q-DEAM, at each outer loop we x β and quickly “cool” the process
down in the inner loop by controlling q → 1, which leads to a tem-
porary sub-optimal solution. Then we decrease β at an exponential
speed to rerun the inner loop, and we nally obtain the global opti-
mum solution with high probability when β is decreased to one. In
Fig. 1, we show the convergence performance of the three algorithms
for one particular experiment. The convergence of q-DAEM is ob-
viously much faster than others. The corresponding estimated PDF
is shown in Fig. 2. In this speci c case, the standard EM is actually
failed, while the DAEM algorithm and the q-DAEM algorithm are
successful.

6. CONCLUSIONS

In this paper, we proposed the q-DAEM algorithm based on the
Tsallis entropy and showed its relationship to statistical mechanics.
By controlling the system temperature, we obtained an annealing
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process to solve the maximum log-likelihood optimization problem
in the context of mixed Gaussian parameter estimation. We showed
that the proposed algorithm actually minimizes a counterpart of the
free energy in statistical mechanics by controlling an effective tem-
perature. By comparing the proposed q-DAEM algorithm with the
DAEM algorithm and the standard EM algorithm, we showed that
the q-DAEM algorithm has a much higher convergence speed and
successful ratio. 7. REFERENCES
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