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ABSTRACT

In this paper, we extend the decentralized estimation model
to the case in which imperfect transmission channels are con-
sidered. The proposed estimators, which operate on addi-
tive channel noise corrupted versions of quantized noisy sen-
sor observations, are approached from a maximum likelihood
(ML) perspective. Complicating this approach is the fact that
the noise distribution is rarely fully known to the fusion cen-
ter. Here we assume the distribution is known but not the
de ning parameters, e.g., variance. The resulting incomplete
data estimation problem is approached from a expectation–
maximization (EM) perspective. The critical initialization and
convergence aspects of the EM algorithm are investigated.
Furthermore, the estimation of the source parameter is ex-
tended to the blind case where both the channel and sensor
noise parameters are unknown. Finally, numerical experi-
ments are provided to show the effectiveness of the proposed
estimators.

Index Terms— decentralized estimation, sensor network.

1. INTRODUCTION

Many wireless sensor networks (WSNs) are constrained by
the fact the that bandwidth is limited, imposing the use and
transmission of quantized binary versions of the original noisy
observations. Many recent efforts address the estimation of
a deterministic source signal from quantized noisy observa-
tions [1–4]. When the probability density function (pdf) of
the sensor noise is known, transmitting a single bit per sensor
leads to minimal loss in estimator variance compared with a
clairvoyant estimator (estimator based on unquantized mea-
surements) [1, 3, 4]. Alternatively, when the sensor noise pdf
is unknown, pdf–unaware estimators based on quantized sen-
sor data have also been introduced recently [4].

The distributed estimation techniques considered in the
previously proposed methods are based on quantized noisy
sensor observations. These methods subsequently assume
that the transmissions of binary observations from sensors to
fusion center are perfect. In this paper, we extend the distrib-
uted estimation model to admit transmission imperfections,
i.e., we consider the case where the quantized noisy sensor

observations are corrupted by additive noise during transmis-
sion from sensors to fusion center. The considered estimator
is hence based on noisy quantized versions of noisy sensor
observations. Utilizing this extended WSN model, we de-
rive the maximum likelihood (ML) estimate of a determinis-
tic source signal. This formulation is complicated by the fact
that the noise statistics are rarely known entirely in practice.
Here we consider the practical case in which the noise pdf
is known (e.g., Gaussian) but some parameters of the distri-
bution are unknown. For instance, a case frequently encoun-
tered in practice is when the noise pdf is known except for
its parameter σ (or equivalently its variance). Moreover, the
unlabeled nature of the fusion center observations makes the
problem at hand a typical task with incomplete data. We fo-
cus on the so-called EM algorithm, which has attracted a great
deal of interest over the past few years in a wide range of ap-
plication involving tasks with incomplete data sets [5]. We
integrate the EM algorithm to solve the estimation problem
where the channel noise parameter is unknown. The critical
initialization and convergence aspects of the EM algorithm
are investigated. Furthermore, the estimation of the source
parameter is extended to the blind case where both the chan-
nel and sensor noise parameters are unknown. Finally, nu-
merical experiments are provided to show the effectiveness of
the proposed estimators.

2. PROBLEM FORMULATION

Consider a set of K distributed sensors, each making obser-
vations of a deterministic source signal θ. The observations
are corrupted by additive noise and are described by [1, 2, 4]

x(k) = θ + n(k), k = 1, 2, . . . ,K. (1)

Noise samples {n(k) : k = 1, 2, . . . ,K} are assumed zero–
mean, spatially uncorrelated and independent. Furthermore,
the density function of the sensor noise is denoted by n(k) ∼
fn(u;σn), where σn denotes the scale parameter of fn.

Due to the inherent bandwidth limitations in sensor net-
works, the {x(k) : k = 1, 2, . . . ,K} observations need to be
quantized. To this end, we consider the quantization opera-
tion as the construction of a set of indicator variables, which
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are binary observations [1, 2, 4],

b(k) = 1{x(k) ∈ (τk,+∞)}, k = 1, 2, . . . ,K (2)

where τk ∈ Z is a threshold de ning b(k), Z denotes the set of
real numbers, and 1{·} is the indicator function. In addition,
due to imperfections of communication links between sensor
nodes and the fusion center, we further extend the model to
include channel noise,

y(k) = b(k) + w(k), k = 1, 2, . . . ,K (3)

where the {w(k) : k = 1, 2, . . . ,K} are assumed to be zero–
mean independent channel noise samples and {y(k) : k =
1, 2, . . . ,K} are the noisy observations received at the fusion
center. Moreover, the density function of the link noise is
denoted by w(k) ∼ fw(u;σw), where σw denotes the scale
parameter of fw. The channels between the source signal and
the sensors, and the sensors and the fusion center, are modeled
as additive white Gaussian noise (AWGN), the de ning pdf
of which is given by f(u) = 1/(σ

√
2π) exp

(−u2/(2σ2)
)

where σ denotes the spread parameter.

3. ESTIMATION BASED ON NOISY BINARY
OBSERVATIONS

Consider the most demanding bandwidth constraint case, in
which sensors are restricted to transmit one bit per x(k) obser-
vation. Furthermore, let every sensor use the same threshold
τ to form {b(k) : k = 1, 2, . . . ,K}, i.e., b(k) = 1{x(k) ∈
(τ,+∞)}, k = 1, 2, . . . ,K. Instrumental to the WSN scheme
presented in Section 2 is the fact that b(k) is a Bernoulli ran-
dom variable with parameter

ψ(θ) � Pr{b(k) = 1} = 1− Fn(τ − θ) (4)

where Fn(·) is the cumulative distribution function of n(k).
The probability density function of the noisy observations re-
ceived at the fusion center, i.e., y(k) = b(k) + w(k), for
k = 1, 2, . . . ,K , is then given by

fy(y) = aw(y)[1− Fn(τ − θ)] + bw(y) (5)

where aw(y) � [fw(y − 1)− fw(y)] and bw(y) � fw(y).
An inspection of the pdf of the observed random variable

reveals that y can be modeled as a two–component Gaussian
mixture model: fy(u) = Fn(τ − θ)fw(u) + [1 − Fn(τ −
θ)]fw(u − 1), where Fn(τ − θ) and [1 − Fn(τ − θ)] are the
mixing probabilities.

A realistic approach to the estimation problem in WSNs is
to assume that the noise pdf is known (e.g., Gaussian) but that
some of its parameters are unknown [1]. A case frequently
encountered in practice is when the noise pdf is known except
for its parameter σ (or equivalently its variance). In the fol-
lowing, we consider the estimation problem when the channel

noise parameter σw is unknown but the sensor noise parame-
ter σn is known.

Let us de ne ψ � ψ(θ) = 1 − Fn(τ − θ). Note that the
ψ is the probability that the binary sensor observation b(k)
is unity, i.e., ψ(θ) = Pr{b(k) = 1}, and is restricted to the
open interval (0, 1). To simplify the problem, we rst derive
the estimate for ψ and utilize the invariance of the ML esti-
mate to estimate θ using (4). The ML estimate of ψ ∈ (0, 1)

thus reduces to ψ̂ML = argmaxψ
∏K
k=1[1 − ψ]fw(y(k)) +

ψfw(y(k) − 1). Taking the natural log(·) yields the log–
likelihood function, denoted as ΛL(ψ), and the ML estimate
of ψ is then given by

ψ̂ML = arg max
ψ

K∑
k=1

log([1−ψ]fw(y(k))+ψfw(y(k)−1)).

(6)
The unknown parameter set for the above estimation is p =
{ψ, σw}. Due to the lack of information concerning the labels
of {y(k) : k = 1, 2, . . . ,K}, the summation formulation and
the unknown channel parameter, the typical ML estimation
encounters dif culty. The missing label information makes
the problem at hand a typical task with an incomplete data set.
We focus on addressing this problem utilizing the so-called
EM algorithm, which has attracted a great deal of interest over
the past few years in a wide range of application involving
tasks with incomplete data sets [5].

The followings are the M– and E– steps for the unknown
parameter set estimation of nite Gaussian mixture models in
the considered WSN application.
E–Step – Let the parameters estimated at the j–th itera-

tion be marked by a superscript (j). Compute the posterior
probabilities

q(k) =
ψ̂

(j)
MLfw(y(k)− 1|p(j))

ψ̂
(j)
MLfw(y(k)− 1|p(j)) + (1− ψ̂(j)

ML)fw(y(k)|p(j))
.

(7)
M–step – The ML estimates, p̂(j+1) = {ψ̂(j+1)

ML , σ̂
(j+1)
w,ML}

are given by

ψ̂
(j+1)
ML =

Δ(q)

K
(8)

where Δ(q) �
∑K

k=1 q(k) and q = {q(1), q(2), . . . , q(K)},
and

σ̂
(j+1)
w,ML =

[
Δ(q� (y − 1)2) + Δ((1 − q)� y)

K

]1/2

(9)

where y = {y(k) : k = 1, 2, . . . ,K}, and � and (·)2 denote
the element–wise multiplication and squaring operations, re-
spectively.

If |ψ̂(j+1)
ML −ψ̂(j)

ML| > ε1 and |σ̂(j+1)
w,ML−σ̂(j)

w,ML| > ε2, where
| · | and εi for i = 1, 2, denote the absolute value operator and
positive small numbers, respectively, the algorithm returns to
the E–step. Otherwise, the iteration is ended.
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Given the estimate of ψ, and utilizing the facts that Fn(·)
is a bijection and symmetric, and the ML estimates are invari-
ant, the ML estimate of θ is given by

θ̂ML = F−1
n (ψ̂ML) + τ (10)

where ψ̂ML is the solution obtained through the EM algo-
rithm.

The initialization of the ψ and σw is an important step of
the EM algorithm. Consider rst the initialization of ψ̂ML.
The ψ(0)

ML is set to:

ψ
(0)
ML =

Δ(y)

K
. (11)

The reason for this setting can be seen as follows. By the
strong law of large numbers: ψ(0)

ML = (Δ(y))/K → E{y}
almost surely, which implies that ψ(0)

ML → E{b} + E{w} =
E{b} = ψ following from the fact that the channel noise is
zero–mean. Due to the nite number of fusion center obser-
vations, the initial estimate ψ(0)

ML ≈ ψ.
Consider next the initialization of the estimate ofσw . Note

that φ(y) = [1−Fn(τ−θ)]Fn(τ−θ)+σ2
w since φ(b) = [1−

Fn(τ − θ)]Fn(τ − θ), where φ(·) denotes the variance of its
argument. Solving for σw yields σw =

√
φ(y)− φ(b). Uti-

lizing the unbiased ML estimator of the variance of y and the
loose upper bound [[1− Fn(τ − θ)]Fn(τ − θ) ≤ 1/4] gives

σw ≥
√√√√ 1

K − 1

K∑
k=1

(
y(k)− Δ(y)

K

)2

− 1

4
� L(σw).

(12)
Clearly, the upper bound of σw is estimated by

σw ≤
√√√√ 1

K − 1

K∑
k=1

(
y(k)− Δ(y)

K

)2

� U(σw). (13)

Noting that the L(σw) can take on imaginary numbers if the
term inside the square root is negative, the σ̂w,ML is hence
initialized as

σ̂
(0)
w,ML =

{
(L(σw) + U(σw))/2, Im(L(σw)) = 0

(U(σw))/2, Im(L(σw)) �= 0
(14)

where Im(·) denotes the imaginary part of its argument.
It is known that it is possible for the EM algorithm to con-

verge to local extrema or saddle points in unusual cases. In the
following, we prove that the log–likelihood function is con-
cave in ψ guaranteeing the convergence to global maximum.
The log–likelihood function, ΛL(ψ), is rewritten as ΛL(ψ) =∑K
k=1 log(aw(y(k))ψ + bw(y(k))). Note that aw(y(k))ψ +

bw(y(k)) is a concave function in ψ, and that aw(y(k))ψ +
bw(y(k)) is monotonically decreasing (increasing) if aw(y(k))
< 0(> 0). Also recalling that log(·) function is strictly con-
cave indicating that log(aw(y(k))ψ + bw(y(k))) is concave

in ψ. Finally, noting that the summation preserves concavity
concludes the proof.

An estimator that requires the least amount of information
is one that assumes that the sensor noise parameter σn is also
unknown along with the channel noise parameter σw. This is
the case considered in the following.

To estimate θ when σn and σw are unknown, while keep-
ing the bandwidth constraint to one bit per sensor, we divide
the sensors in two groups, with each group using a different
region (i.e. threshold) to de ne the binary random observa-
tions [1]:

Si � (τi,+∞) for k = Ki (15)

for i ∈ {1, 2}, where K1 = {1, 2, . . . ,K/2} and K2 =
K/2 + 1,K/2 + 2, . . . ,K . That is, without loss of gener-
ality, the rst K/2 sensors quantize their observations using
the region S1, while the remainingK/2 sensors utilize the re-
gion S2. Furthermore, we assume, without loss of generality
that τ2 > τ1.

The Bernoulli parameters of the resultant binary observa-
tions are expressed in terms of the cdf of the the standard
Gaussian random variable,

ψi � 1− Fs ((τi − θ)/σn) for k = Ki (16)

for i ∈ {1, 2}. Given the noise independence across sensors,
the ML estimate of ψi for i ∈ {1, 2} is found as the solutions
to EM algorithms operating on yi = {y(k) : k ∈ Ki}. Mim-
icking the derivations in known sensor noise parameter case,
we invert the cdf of standard Fs(·) and invoke the variance
property of ML estimates to obtain the ML estimate of θ [1]:

θ̂ML =
F−1
s (1− ψ̂2,ML)τ1 − F−1

s (1 − ψ̂1,ML)τ2

F−1
s (1− ψ̂2,ML)− F−1

s (1 − ψ̂1,ML)
(17)

where ψ̂i,ML denotes the ML estimates obtained through the
EM algorithm.

4. NUMERICAL EXPERIMENTS

This section presents numerical experiments, rst analyzing
the performance of EM algorithm in WSN problems and sec-
ond evaluating the performances of EM–based ML estimator
with unknown channel parameter (MLU) and the EM–based
ML estimator with unknown channel and sensor noise, i.e.,
the blind ML estimator (MLB). Results are compared to the
variance of the clairvoyant estimator (CE–operating directly
on the analog observations, to the variance of binary estima-
tor (BE–operating directly on the quantized noisy observa-
tions) [1, 3, 4], and to the variance of the ML estimator with
known channel and sensor parameters (MLK–operating on
the noisy quantized noisy observations) [6].

Consider a fusion center operating in a WSN with para-
meters, τ = 0.5, σn = 1, σw = 0.25 and K = 1000, where
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Fig. 1. Histogram of the fusion center observations, and the-
oretical and estimated pdf of the observed random variable.

the source parameter to be estimated is θ = 0.25. The chan-
nel noise is unknown at the fusion center whereas the sensor
noise is known. The (normalized) histogram of the fusion
center observations are given in Fig. 1. The true pdf of the
observed random variable y, along with the estimated pdf uti-
lizing the EM procedures are given in Fig. 1. Note that the
estimated pdf closely follows the true pdf.

Consider next a fusion center operating in a WSN with
parameters τ = 0, σn = 1, σw = 0.5, θ = 1 and K =
{250, 500, 1000, 2000, 4000}. The variances of the MLU and
MLB are plotted in Fig. 2, along with the variances of the CE
and MLK [6]. Note that the MLB performance loss compared
to that of the MLU, and the MLU performance loss com-
pared to that of the MLK are only marginal. Also, the estima-
tors exhibits the expected performance order, i.e., φ(θ̂CE) <

φ(θ̂BE) < φ(θ̂MLK) < φ(θ̂MLU) < φ(θ̂MLB) where φ(·)
denotes the variance of the corresponding random variable.
Also considered is the case where the estimators are oper-
ating in a WSN with σw = {0.5, 0.75, 1, 1.25, 1.5}. The
MLU, MLK, BE and CE variances are plotted in Fig. 2 for
K = 1000. Note that in this case, the CE and BE variances
appear at since they consider perfect transmission. Also, the
performances of MLU and MLK approach the performance
of BE as σw decreases since the extended WSN scheme, in
this case, reduces to a WSN that disregards the transmission
errors occurring between the sensors and the fusion center.

5. CONCLUDING REMARKS

The decentralized WSN estimation scheme is extended to ad-
mit imperfections occurring during the data transmission from
sensors to fusion center. Based on the extended decentral-
ized estimation scheme, maximum likelihood estimators op-
erating on corrupted quantized noisy sensor observations, for
unknown channel noise and known sensor noise, and for un-
known channel and sensor noise cases, are proposed. The
missing label information makes the addressed problem a typ-
ical task with an incomplete data set, which we approach from
a expectation–maximization (EM) perspective. The critical
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Fig. 2. Variances of MLB, MLU, MLK, BE and CE for (top:)
varyingK and (bottom:) varying σw.

initialization and convergence aspects of the EM algorithm
are investigated. Numerical examples showed that the near–
optimal performance of the algorithms and determined that
the variance of the estimators increase only marginally com-
pared to the estimator with known channel parameter/known
channel and sensor parameter.
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