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ABSTRACT

We consider the problem of computing variances in large-
scale Gauss-Markov random eld (GMRF) models. In our
prior work we considered the short-range correlation case,
and we proposed a simple low-rank method which computes
approximate variances with linear complexity in the number
of nodes. In addition to its low complexity, the method has
good guarantees on the quality of the approximation. In this
paper we extend our method and analysis using a wavelet-
based multi-scale approach which is applicable to models with
much longer correlation lengths.

Index Terms— GMRF, approximate variances, wavelets.

1. INTRODUCTION

Gauss-Markov random eld models (GMRF) [1] are graphi-
cal models on undirected graphs where the variables are jointly
Gaussian. The nodes of the graph denote random variables,
and the edges represent statistical relations between the vari-
ables. We address the problem of estimation in large-scale
GMRFs, which arise in a wide variety of applications in-
cluding computer vision, geostatistics and oceanography. A
prototypical application is interpolation from sparse irregular
noisy measurements [2].

Since GMRF estimation is a special case of a linear Gaus-
sian problem, in principle the conditional means and vari-
ances can be obtained by matrix inversion. However, for
large-scale problems with millions of variables, exact algo-
rithms such as Gaussian elimination (withO(N3) complexity
in the number of variables N ) are intractable. Approximate
mean estimates can be computed with O(N) complexity for
sparse graphs by iterative solvers such as conjugate gradients
or multigrid. Mean estimates are much less insightful when
the con dence in them (the variance) is unknown. However,
no general techniques exist to ef ciently compute the vari-
ances: exact methods are too computationally demanding,
while approximate methods such as loopy belief propagation
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give no guarantees on accuracy. In [3] we have presented
a simple approach to compute ef cient variance approxima-
tions in models with short-range correlations using a low-rank
matrix instead of identity when computing the inverse. By de-
signing the low-rank matrix such that only the weakly corre-
lated terms are aliased, we were able to give provably accurate
variance approximations.

In this paper we propose a multi-scale construction which
extends our approach to handle models with long correlation
length. The basis of our construction is the discrete wavelet
transform that we use to decompose the correlation across
several scales, thus reducing the problem with long-correlation
length to a few problems with shorter correlation length. We
extend some of the favorable properties of our earlier ap-
proach, including unbiasedness and accuracy of variances.

In Section 2 we discuss estimation with GMRF models
and review our single-scale low-rank variance approximation
approach. We describe the multi-scale extension in Section 3
rst for 1D models, and then for 2D. We exhibit the merits of

the approach on examples in Section 4.

2. ESTIMATION IN GMRF MODELS

A GMRF model is de ned by a graph G = (V, E) with ver-
tices V and edges E ⊂

(
V

2

)
, i.e., some set of two-element

subsets of V , and a collection of jointly Gaussian random
variables x = (xi, i ∈ V ) with probability density given in
information form:

p(x) ∝ exp{−
1

2
x′Jx+ h′x}. (1)

The matrix J is called the information matrix, and it is sym-
metric positive de nite (J � 0) and sparse so as to respect the
graph G: if {i, j} �∈ E then Jij = 0. We call h the potential
vector. These quantities are directly related to the usual pa-
rameterization of Gaussian densities in terms of the mean μ =
E{x} and the covariance matrix P = E{(x− μ)(x− μ)′}:

μ = J−1h and P = J−1. (2)

For a concrete example, consider the linear Gaussian prob-
lem, with observations y = Ax + n, where x is zero-mean
with covariance P , and independent noise n is zero-mean and
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with covariance R. Then the Bayes least-squares estimate
(x̂, P̂ ) is given by:

(P−1 +A′R−1A) x̂ = A′R−1y, (3)

P̂ = (P−1 +A′R−1A)−1.

If Jx = P−1 is a sparse GMRF prior on x, and y are local
observations, then J = (P−1 +A′R−1A) has the same spar-
sity as Jx, with only the diagonal terms being modi ed. Now
J and h = A′R−1y are the information parameters specify-
ing the conditional model given the observations. As we dis-
cussed, for large-scale GMRFs exact inversion is intractable,
so approximate approaches have to be considered.

2.1. Low-rank variance calculation

Our low-rank variance approximation approach [3] is based
on the fact that for sparse J , while computing P = J−1 may
be hard, calculating the i-th column of P can be done ef -
ciently to a given tolerance by a sparse iterative solver. This
is done by solving a linear system JPi = ei, where ei is the
i-th standard basis vector. To get all N columns of P , this
would have to be done N times, at each node in the graph:
JP = [e1, ..., eN ] = I with complexity O(N2). This is
still intractable for large-scale models (we do not need the
full P with N2 elements; computing the N variances suf-
ces). In [3] we proposed to use a low-rank matrixBB′, with
B ∈ RN×M andM � N , instead of the identity. The system
JP̂ = BB′ can be solved with O(MN) complexity in two
steps: rst we solve JR = B using iterative solvers. Then,
we post-multiply R by B′, i.e. P̂ii = [RB′]ii (which requires
MN operations, as we only need the diagonal).

To get accurate variance approximations, B must be de-
signed appropriately, taking the graph into consideration. Let
all rows bi of B have unit norm: b′ibi = 1. Consider the
quantity diag(J−1(BB′)):

P̂ii � [J−1(BB′)]ii = Pii +
∑

i�=j

Pij b
′
ibj . (4)

We need the error terms Pij b′ibj to be nearly zero for all pairs
of nodes. In [3] we assume that the correlation Pij rapidly
decays with distance from i to j. Hence, error terms are au-
tomatically small for pairs i and j that are far away compared
to the correlation length. It remains to designB so that bi and
bj are orthogonal for nearby nodes i and j.

Constructing B for 1D models: single-scale version. To be
concise, we outline a construction of B on 1D models. Refer
to [3] for a construction on 2D lattices and arbitrary graphs.

Consider a 1D model of lengthN (allowing nearest neigh-
bor, as well as long-range interactions in J). We group nodes
into classes, which we call colors, such that nodes of the same
color are a distanceM apart. We will have a column Bc of B
for each color c. We assign Bc(i) = ±1 randomly for each
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Fig. 1. A column B3 of B and the corresponding PB3.

node i of color c, and Bc(j) = 0 for other nodes. An illustra-
tion appears in Figure 1. We plot a column of B on the left,
and the result of J−1Bi on the right. To nd P̂ , we have to
repeat this for all the colors, add them, and apply B′.

Properties of P̂ . In [3], we have analyzed the approximation
P̂ , and showed that it has very favorable properties. Due to
the random nature of B, P̂ is an unbiased approximation of
P , and for models with short correlation length, by choosing
the local region to be large enough, we establish bounds on
its variance. Next, we extend the single-scale construction
to multi-scale via a discrete wavelet transform. Some of the
favorable properties are inherited by the extension.

3. MULTI-SCALE LOW-RANK VARIANCE
APPROXIMATION VIA WAVELETS

When the correlation length is comparable to the size of the
signal, the single-scale approach gives no computational sav-
ings. To address this problem, we propose to decompose the
signal into several frequency bands. A very convenient tool
for such a decomposition is the discrete wavelet transform.

A discrete wavelet decomposition is speci ed by a scal-
ing function φ(t) and a wavelet function ψ(t) which are the
solutions to certain related dilation equations [4]. A scal-
ing function generates a family of dilations and translations,
φs,k(t) = 1

2s/2
φ(2−st − k). For a xed scale s, the set

{φs,k(t)}k generates the approximation space Vs. The spaces
Vs are nested: V1 ⊃ V2 ⊃ V3 ..., with higher s corresponding
to coarser scales.

The wavelet function ψ(t) also generates a family of di-
lations and translations: ψs,k(t) = 1

2s/2
ψ(2−st − k). The

span of {ψs,k(t)}k at a given scale s gives the detail space
Ws = Vs−1 	 Vs. We can decompose the ne scale V1 into
W1⊕W2⊕...⊕WNs

⊕VNs
, whereNs is the number of scales.

We focus on orthogonal wavelet families where ψs,k(t) is or-
thogonal to all other translations and dilations of ψ(t), and to
scaling functions at scale s and coarser.

A discrete wavelet basis for the space V1 is constructed by
collecting the scaling functions at the desired coarsest scale,
and the wavelet functions at all ner scales as columns of a
matrix W . Let Ss and Ws consist of the translations of the
scaling and wavelet functions, respectively, at scale s. Then
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Fig. 2. (left) identity and (right) locally orthogonal B matrix.
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Fig. 3. (left) A discrete wavelet basis (right) B matrix ob-
tained by splicing certain columns ofW at each scale.

our orthogonal basis consists of

W = [W1 W2 .... WNs
SNs

]. (5)

We consider wavelets on intervals, and use periodic boundary
conditions. At level s we have 2Ns−s possible translations,
hence that many columns in Ws. An illustration of a Haar
wavelet basis for N = 32 is given in Figure 3 (left).

Constructing multi-scale spliced B for 1D. To motivate the
multi-scale construction in 1D, we refer back to the single-
scale one. Using I instead of B in (4) results in a perfect re-
covery of P , as there is no interference between the different
rows of I: e′iej = 0 for i �= j. When the correlation length
is much smaller than N , there is negligible interference be-
tween nodes far enough away. By splicing the columns of B
as illustrated in Figure 2, we get a matrix B which is locally
orthogonal. By splicing we mean adding groups of columns
(corresponding to nodes of the same color, see Section 2.1)
together, after each column is negated with probability 1/2.
This can be represented as B = IC, where C is N ×M .

For the multi-scale construction we apply this splicing op-

eration at each scale,Bs =WsCs. This construction attempts
to distribute the errors evenly across scales. The correlation
length between nodes i and j at scale s (where P is ltered
with the wavelet at scale s) changes with scale. For common
GMRF models, such as thin-plate and thin-membrane, we ex-
pect it to double as we move to a coarser scale1. We combine
only those columns of Ws that lead to small interference of
any pair of vectors bi and bj at that scale. Thus, due to longer
correlations, for coarser scales we can only combine half as
many vectors. However, the number of columns of Ws also
decreases by 2 as we move to a coarser scale, so the resulting
number of columns ofBs stays the same for all s. With such a
construction, the number of columns of B will be O(log2N)
instead of N for the full wavelet basisW .

Properties of the multi-scale approximation P̂ . In the single-
scale case we showed that P̂ is unbiased, and analyzed the
variance. We extend these results to 2D. The error is equal to

E = P − P̂ = P − PBB′ = P (WW ′ −BB′). (6)

We are only interested in the variances, hence in diag(E). We
can decompose E across scale: E = P (WW ′ − BB′) =

P
∑Ns

s=1(WsW
′
s − BsB

′
s). Let cs(i) be the sign assigned to

column i of Ws, let C(i; s) be the set of columns that get
merged with i, and denote column i of Ws by Ws(i). Then
E[BsB

′
s] =WsW

′
s+

∑j∈C(i;s)
i�=j E[Ws(i)Ws(j)

′cs(i)cs(j)] =
WsW

′
s. The error terms cancel out becauseE[cs(i)cs(j)] = 0

for i �= j. Thus, the approximation P̂ is unbiased.
To analyze the variance we consider tr(E). We have:

tr(Es) = tr(P (WsW
′
s−BsB

′
s)) = tr(W ′

sPWs−B
′
sPBs) =

tr(W ′
sPWs − C

′
sW

′
sPWsCs) = tr(Ps(I − CsC

′
s)). (7)

where Ps � W ′
sPWs is the covariance of the wavelet coef -

cients at scale s. Then, via the same analysis as in [3]:

tr(Ps(I − CsC
′
s)) =

∑

i�=j,j∈C(i;s)

Ps(i, j)cs(i)cs(j). (8)

Putting all the scales together, we have tr(E) =
∑

s tr(Es) =∑
s

∑
i�=j,j∈C(i;s) Ps(i, j)cs(i)cs(j). Now, Var(tr(E)) ≤∑

s

∑
i�=j,j∈C(i;s) Ps(i, j)

2, as cs(i) are i.i.d. with variance
1. Now, assuming that the errors at different nodes are only
weakly correlated, which we justify with experiments in Sec-
tion 4, we have

∑
i Var(Eii) ≈ Var(

∑
Eii) = Var(tr(E)) ≤∑

s

∑
i�=j,j∈C(i;s) Ps(i, j)

2. By combining columns of Ws

such that Ps(i, j) is small for interfering terms, the total vari-
ance of the errors is kept small.

1The correlation length of wavelet coef cients ds;k of self-similar
and certain stationary processes is roughly the same at all scales:
E[ds;k1ds;k2 ] ∝ |k1 − k2|α, at any scale, where α depends on the regu-
larity of the wavelet, and the properties of the random process [5]. However,
lag of k1 − k2 at scale s translates into 2(s−1)(k1 − k2) at the nest scale.
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Fig. 4. Low-rank variance approximation for a 1D signal,
N = 256: (top) single-scale B, with M = 32, and (bottom)
multi-scale B, withM = 28, Coifman wavelet basis.

Constructing multi-scale B for 2D - separable wavelets.
We start with the separable construction of a 2D wavelet ba-
sis, which takes outer products between 1D functions. We
combine translations of wavelet and scaling functions at each
scale to create a family of triplets [4]:

ψ
(1)
s;k1,k2

(x, y) =
1

2s
φ(2−sx− k1)ψ(2−sy − k2), (9)

ψ
(2)
s;k1,k2

(x, y) =
1

2s
ψ(2−sx− k1)φ(2

−sy − k2),

ψ
(3)
s;k1,k2

(x, y) =
1

2s
ψ(2−sx− k1)ψ(2−sy − k2).

We stack ψ(i)s;k1,k2 as columns of W to create an orthogonal
basis. To produce a corresponding matrix B, we apply the
same operations to spliced wavelets and scaling functions,
i.e., to columns ofWsCs, and SsCs.

4. RESULTS

Our rst experiment involves a 1D model with length N =
256, with connections from each node to nodes up to 4 steps
away. Noisy observations are added at a few randomly se-
lected nodes. The J matrix is close to singular, and the cor-
relation length in the model is long. In Figure 4 we illustrate
the results using both the single-scale (top plot) and the multi-
scale (bottom plot) low-rank methods. We use M = 32 for
the single-scale approach, which is too small compared to the
correlation length. While the approximation is unbiased, its
high variance makes it useless. For the multi-scale case, us-
ing a smaller matrix B withM = 28, constructed by splicing
a Coifman wavelet basis, we are able to nd very accurate
variance approximations.

Next we apply the approach to a 2D thin-membrane model
of size 256 × 256, with sparse noisy measurements. We use

Fig. 5. 2D thin-membrane example: (top) approximate
variances, (bottom left) errors, and (bottom right) 2D auto-
correlation of errors.

separable Coifman wavelets, and theB matrix is 65536×304.
This is a very signi cant reduction in the number of columns,
compared to W . The results appear in Figure 5 (top plot).
Our approximate solution is a close match to the exact solu-
tion, which can still be computed for models of this size (our
multi-scale approach can also be applied to larger problems,
where exact computation is intractable). The errors and their
2D auto-correlation appear in Figure 5 (bottom left and right,
respectively). The errors are only weakly correlated, support-
ing our error analysis in Section 3.
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