
SPARSE MANIFOLD LEARNING WITH APPLICATIONS TO SAR IMAGE
CLASSIFICATION

V. Berisha 1,2, N. Shah 2, D. Waagen 2, H. Schmitt 2, S. Bellofiore 2, A. Spanias 1, D. Cochran 1

SenSIP Center, Arizona State University1 Raytheon Missile Systems2

ABSTRACT
Nonlinear data-driven dimensionality reduction techniques have

recently gained popularity due to the emergence of high di-

mensional data sets. The algorithmic complexity and storage

requirements of these techniques, however, can make them

prohibitive in resource-limited applications. It is therefore

beneficial to reduce the number of exemplar samples required

for performing an out-of-sample extension to a test point. In

this paper, we propose a novel method for selecting a min-

imal set of exemplars and performing the out-of-sample ex-

tension. In the case of two-class target recognition with Syn-

thetic Aperture radar (SAR) data, we compare the efficacy of

the proposed approach with other approaches for selecting a

subset of the available training samples. We show that the

proposed algorithm outperforms the existing methods by pro-

viding low-dimensional embeddings that maintain interclass

separability using fewer retained exemplars.

Index Terms— classification, reduced complexity Isomap,

dimensionality reduction, out-of-sample extension, SAR

1. INTRODUCTION

The emergence of high-dimensional data sets has driven in-

terest in using manifold learning algorithms to extract lower-

dimensional representations [1]. In this paper, we are con-

cerned with the storage requirements and computational com-

plexity of dimensionality reduction and out-of-sample exten-

sion techniques for target recognition with Synthetic Aperture

Radar (SAR) data. The data is taken from the public release

portion of the Moving and Stationary Target Acquisition and

Recognition (MSTAR) dataset [2], a collection done using a

10 GHz SAR sensor in one-foot resolution spotlight mode

at different azimuth and depression angles for a number of

different targets. An example to motivate the need for lower-

dimensional representations is shown in Fig. 1. The figure

shows 50 pixel x 50 pixel SAR images of two targets, a T-72

tank and a BMP-2 infantry fighting vehicle. The classifica-

tion of individual test images as belonging to the T-72 class or
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Fig. 1. Sample SAR images of a T-72 tank and a BMP-2 infantry

fighting vehicle.

the BMP-2 class requires performing analysis in R2500 space.

From the well-known Curse of Dimensionality, it is clear that

the density of the data set in this high-dimensional space is

sparse and therefore any parameter estimates performed in the

high-dimensional space are unreliable. Due to the similarity

between images, it is reasonable to assume that, although the

data set is represented in R2500, information relevant for the

representation and classification of these images is likely to

reside in a much lower-dimensional subspace. This motivates

the use of dimensionality reduction techniques for learning

the underlying informative subspace.

Dimensionality reduction techniques include extraction of

features defined by domain experts (e.g., size, shape, contrast,

etc.) and data-driven subspace projection/parametrization co-

ordinates. The data-driven techniques can be linear or non-

linear. Linear techniques attempt to maintain consistent Eu-

clidean distances between points in the low-dimensional em-

beddings, whereas nonlinear techniques attempt to maintain

consistent geodesic distances (distances along the manifold)

in the low-dimensional embeddings [3] [4] [5]. Linear tech-

niques work well in situations in which the data lies on a lin-

ear lower-dimensional subspace, however they grossly over-

estimate the underlying dimension for data sets lying in non-

linear manifolds.

Although nonlinear dimensionality reduction algorithms

(i.e. Isomap [5]) can provide better representations of the

underlying manifold geometry, their complexity and storage

requirements can make them prohibitive for certain applica-

tions. Both complexity and storage increase quadratically

with the number of available observations. Although research

in the algorithms themselves has been extensive [3] [5], lit-
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Table 1. Determining the Number of Training Points

• Compute the vector of the lth largest eigenvalues of M̃ divided

by the number of points, λ
N

• M̃0 = random 10 x 10 symmetric sampling of M̃

• For each training point not randomly selected during initializa-

tion p = 1 . . . N − 10

– For each unselected training point n = 1 . . . N −p−10

∗ M̃p,n = sample M̃ corresponding to the subset of

candidate points and M̃0

∗ Compute the vector of the lth largest eigenvalues

of M̃p,n divided by the number of points,
λp,n

p+1

∗ en = ‖λp,n

p+1
− λ

N
‖

– n∗ = minimizer of en

– M̃p = sample M̃ to also include the n∗th point

– ep = ‖λp,n

p+1
− λ

N
‖

– if ep < tol then end

tle has been done to address the issue of reducing the num-

ber of observations stored for out-of-sample extensions [9].

Since the training of these algorithms is performed offline,

the complexity constraints during training are relaxed. How-

ever the low-dimensional embedding of test points must be

performed in real-time. This places restrictions on the com-

plexity and the storage requirements of the algorithm that per-

forms the embedding. Once the test points are projected into

the low-dimensional subspace, classification techniques can

be applied.

In this paper, we propose an algorithm for determining

an appropriate number of points required to represent a low-

dimensional manifold lying in a high-dimensional space, se-

lecting these points, and performing the out-of-sample ex-

tension using only the selected points. We show that the

proposed technique results in smaller storage requirements

without compromising performance. Although the results are

given in terms of a SAR image classification example, the

algorithm is broadly applicable. In fact, the findings can be

generalized to any classification problem.

This paper is organized as follows. Section 2 provides a

description of the proposed algorithm. In Section 3 we ana-

lyze and compare the storage requirements of the proposed al-

gorithm. Section 4 contains sample results using actual SAR

image data and section 5 provides concluding remarks.

2. PROPOSED METHOD

In this section we describe the two main components of the

proposed algorithm: determining the number of points re-

quired to describe the underlying manifold and performing

the out-of-sample (OOS) extension using only the selected

points.
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Fig. 2. The convergence of eigenvalues as more training points are

selected.

Consider a data set {x1, ...,xN} with N points residing in

some m-dimensional space. For l << m, the l-dimensional

embedding of xi is the vector yi. An NxN neighborhood ma-

trix M is formed using some two-argument (kernel) function

K(a, b) with Mij = K(xi,xj). For Isomap, the neighbor-

hood matrix is the geodesic distance between all points xi

and xj. The matrix is then normalized as described in [6] to

form M̃. Denote the largest positive eigenvalues of M̃ and

their corresponding eigenvectors by λj and vj.

2.1. Determining the Number of Points

The lower-dimensional embedding, {y1...yN}, for a high-

dimensional data set, {x1...xN}, will eventually converge as

more points are added to the set. More specifically, as the data

set grows, the eigenvectors, vj, and the scaled largest positive

eigenvalues,
λ
′
j

N , converge [7].

The idea behind the proposed technique is to keep the

minimum number of samples that provide efficient conver-

gence. The idea is based on a greedy optimization scheme in

which we add the points that provide the quickest eigenvalue

convergence. Start with an empty geodesic distance matrix

and add individual rows and columns corresponding to a par-

ticular point. Solve for the eigenvalues of the resulting ma-

trix. These eigenvalues are then compared to the eigenvalues

of the original matrix, M̃. The training point that provides the

quickest convergence at that iteration is added to the set. The

algorithm is outlined in Table 1.

We apply the algorithm to the 2500-dimensional SAR im-

ages. Figure 2 shows the convergence of eigenvalues for each

additional training point in terms of the normalized resid-

ual error between the estimated eigenvalue sequence and the

eigenvalue sequence determined from the full data set. The

appropriate number of training points is determined by set-

ting a tolerance for the convergence, determined for exam-

ple by seeking a knee in the curve of residual error. In this

example, roughly 25% (300 points) of the total data set was
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Fig. 3. An example to demonstrate the principles of the proposed

OOS extension algorithm.

selected.

2.2. Out-of-Sample Extension

Assume that we have available the parameters from an Isomap

algorithm (the principal eigenvectors and eigenvalues of the

geodesic distance matrix) pre-trained with N data points. The

k − th component of the low-dimensional embedding, yp,

corresponding to a newly acquired high-dimensional point,

xp, is determined using the Nyström expansion below [6]

[10].

yp(k) =
1√
λk

N∑
i=1

vikdist(xp,xi) (1)

where dist(xp, xi) denotes the geodesic distance between the

out-of-sample point p and every other point in the training

set. Equation (1) implies that to embed each additional point

we must store the entire training data set, all eigenvalues, all

eigenvectors, and the geodesic distance matrix. For large data

sets this quickly becomes impractical.

Consider the Swiss roll example shown in Fig. 3. Out

of the set of N (x1, ...,xN) total points, we select a subset

of N ′ (x
′
1, ...,x

′

N′ ) points using the algorithm described in

[8]. These are denoted by the dark points in the figure and the

boxed area around each point represents the nearest neighbors

of these points. The total space is therefore divided into N ′

neighborhoods, whose centers (in the nearest-neighbor sense,

not a volumetric average) are the selected points, x
′
j. We ap-

proximate the geodesic distance between the newly acquired

point xp and all points in neighborhood j by the distance be-

tween xp and x
′
j. This allows us to combine all the eigenvec-

tors associated with each neighborhood in the Nyström ex-

pansion. We can formulate the expansion as follows:

yp(k) ≈ 1√
λk

N ′∑
j=1

N
N′∑
i=1

ṽijkdist(xp,x
′
j) (2)
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Fig. 4. Storage requirements ratio (R) as a function of the fraction

of training data used (a).

where ṽijk represents the k − th component of the i − th
eigenvector associated with the j − th neighborhood. Ana-

lyzing equation (2) shows that we can store the sum of the N ′
N

eigenvectors in each neighborhood rather than each individual

eigenvector:

ṽjk =

N
N′∑
i=1

ṽijk. (3)

This formulation allows us to approximate the lower-dimensional

embedding as follows:

yp(k) ≈ 1√
λk

N ′∑
j=1

ṽjkdist(xp,x
′
j). (4)

It is clear from the equation above that the storage require-

ments are significantly less due to the fact that the number of

stored points has been reduced from N to N ′.

3. STORAGE REQUIREMENTS AND COMPLEXITY

As stated earlier, the training data set, the geodesic distance

matrix, and the eigenvectors are the most burdensome in terms

of storage. The proposed algorithm reduces each parameter

set significantly due to the fact that only a subset of N ′ points

out of the total are required to perform the out-of-sample ex-

tension. It is easy to see show that the ratio between the stor-

age requirements of the proposed algorithm and the original

storage requirements can be expressed as follows:

R =
N ′m + N ′2 + N ′l + l

Nm + N2 + Nl + l
(5)

We can approximate the ratio in (5) as a function of the frac-

tion of points used, a = 0 . . . 1. In Fig. 4 we plot R as a

function of a and label the point corresponding to a = 0.25.

The plot shows that by storing 25% of the points we reduce

the storage requirements of the parameter set to ≈ 17% of the

original amount.
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Fig. 5. Separability of two classes as a function of subspace di-

mensionality for four different training set selection techniques. The

baseline is generated by performing the out-of-sample extension

with the complete data set.

4. RESULTS

The results presented in this section are in terms of inter-

class divergence, which we use as a surrogate for classifica-

tion performance. We use the public release portion of the

MSTAR database of SAR images. The SAR images are first

pre-processed using a constant false alarm rate (CFAR) algo-

rithm that centers a 50 pixel x 50 pixel frame around the tar-

get. We test the efficacy of the proposed algorithm for a two

class scenario, namely the T-72 tank and the BMP-2 infantry

fighting vehicle. The data set is divided into two groups, the

training set (depression angle 17o) and the testing set (de-

pression angle 15o). Isomap is used to perform the manifold

learning using only a subset of the training data and the out-

of-sample extension is performed on the whole test set using

the proposed algorithm.

As an alternative to evaluating specific classifier perfor-

mance, we use the Henze-Penrose Divergence (HPD) for mea-

suring relative interclass separability [11]. The underlying as-

sumption is that independent of any particular classifier, fea-

ture sets that exhibit more divergence (or separability) should

in general be of greater utility than feature sets that exhibit

less divergence (or separability) [12]. For two data sets with

an equal number of samples, HPD values range from 0.5 to

1, with 0.5 implying the classes cannot be separated and 1

implying that the two classes are completely separable.

Figure 5 shows the HPD of the two data sets at different

subspace dimensionalities, where, for example, dimension-

ality = 8 means that the first 8 subspace coordinates are re-

tained as features. We compare four different set selection

techniques (with each limited to 25% of the original data) to

the baseline generated using the complete data set. As the plot

shows, our proposed technique (parameter averaging) outper-

forms the other methods at each of the tested subspace dimen-

sionalities and approaches the baseline for higher subspace

dimensionality. The other subset selection techniques include

selecting a subset at random, selecting a subset using the k-

means clustering algorithm, and selecting a subset using clus-

tering based on a priori information about the target azimuth

angle. It is important to note that the storage and complexity

requirements for out-of-sample extensions are identical for all

techniques.

5. CONCLUSION

In this paper, we proposed an algorithm for selecting an ap-

propriate subset of training points for manifold learning and

lower-dimensional embedding in the context of classification.

The purpose of the algorithm is to reduce the storage require-

ments for real-time applications without compromising the

separability of classes in lower dimensions. An explicit algo-

rithm is presented that determines a sufficient set of points for

performing the dimensionality reduction. In addition, an out-

of-sample algorithm making use of only the selected points is

proposed. Preliminary results (with actual SAR data) suggest

that a significant reduction in the training set is possible with-

out a reduction in classification performance, as measured by

interclass divergence.
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