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ABSTRACT
We design algorithms for optimally con guring, in terms of
model complexity as well as operating point, a cascade of
exclusive classi ers on distributed systems, given underlying
resource constraints. Under rate-dependent constraints we de-
sign a Viterbi-like strategy to determine the optimal solution
with signi cantly lower computational complexity than an ex-
haustive search. We illustrate the performance of this strategy
on a cascade of classi ers for a speaker veri cation task, and
highlight performance gains over using a single classi er.
Index Terms – Resource constrained classi cation, Multi-

stage classi cation, Distributed Stream Processing

1. INTRODUCTION

There is a large set of emerging applications that perform
classi cation, ltering, aggregation and correlation over high-
volume, unbounded, continuous data (email, instant messages,
transactional data, audio, video, sensor data etc.). Distrib-
uted stream processing systems (Aurora, Borealis, Telegraph
CQ, System S [1]) provide the framework to deploy and run
such applications on various resource topologies. Distributed
stream processing requires the decomposition of these clas-
si cation tasks into a set of networked operations. In this
context, both classi ers in series with the same model (boost-
ing) and classi ers in parallel with multiple models (bagging)
have resulted in improved classi cation performance. Recent
work [2] shows that the optimal design of two-stage classi-
cation must explicitly consider interaction between stages.
However, this work has not considered resource management
issues [3, 4].
Prior research on resource constrained stream processing

focuses primarily on load-shedding [5, 6]. These approaches
are limited by their assumption that the impact of load shed-
ding on performance is known a-priori. Furthermore, load
shedding is often performed using locally available informa-
tion and metrics, and this may lead to sub-optimal end-to-end
performance. Finally, shedding load at intermediate classi-
ers leads to resource wastage as data has been processed by
upstream classi ers.

∗This work was done while at the IBM T.J. Watson Research Center. Con-
tact author: fwfu@ee.ucla.edu

In [7] we introduced a framework that allows individual
classi ers in the ensemble to operate at different performance
levels given the resources allocated to them. Expressed sim-
ply, instead of decidingwhat fraction of the data to process, as
in load-shedding, we determine how to process available data
given underlying resource constraints. In this paper, we ex-
tend that framework to consider classi ers distributed across
several machines, and develop algorithms for optimally con-
guring such a cascade of classi ers, under resource con-
straints. The paper is organized as follows. We formulate
the problem in Section 2, and provide solutions in Sections 3
and 4. We present experimental results on a real cascade for
speaker veri cation in Section 5, and conclude in Section 6.

2. DEFINITIONS AND PROBLEM FORMULATION
2.1. Utility De nition for Classi er Cascade

Consider a cascade of N binary classi ers with input data X

(Figure 1). Classi er Ck (1≤k≤N ) classi es dataXk−1 into
either class Hk

0 or class Hk
1 , and passes through only data

Xk that it classi es as belonging to Hk
0 ( ltering classi er).

Let pk
D and pk

F respectively denote the probabilities of correct
detection and false alarm.

X 1−kX kX
kC1C 1+kC NC NX

Fig. 1. Classi er Cascade

The total proportion (throughput) of data forwarded by
classi er Ck is labeled tk and the total proportion of data cor-
rectly forwarded is labeled gk. We may compute these under
exclusivity, i.e. P (X ∈ Hk

0 |X ∈ Hk−1
1 ) = 0 ( [7]) as:[

tk

gk

]
=

[
pk

F φk(pk
D − pk

F )
0 φkpk

D

]
︸ ︷︷ ︸

Tk

[
tk−1

gk−1

]
(1)

where φk = P (X ∈ Hk
0 |X ∈ Hk−1

0 ) is the data conditional
probability (on un ltered data) across these two classi ers1 in
the cascade. The above derived relationship accounts for the

1In this paper, we assume that classi ers are independently trained on the
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fact that the data density (a priori probability of belonging to
any class) is modi ed due to ltering by each classi er in the
cascade. Hence, the end to end throughput and goodput may
be computed as:

[
tN

gN

]
= TN · · ·T1

[
t0

g0

]
(2)

where t0 = g0 = 1. This may be geometrically interpreted
(Figure 2 a.) in the performance space (throughput vs good-
put) where the impact of Tk corresponds to a translation in
the operating performance. The cascade of classi ers thus
moves the input point t0, g0 towards the optimal ideal perfor-
mance point tN = gN = P (X∈HN

0 ) (i.e. the point where
all the data is correctly identi ed). The individual operating
points of the classi ers determine the matrices Tk or equiva-
lently the path in this space.
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Fig. 2. a) Operating Performance Characteristic. b) Set of
points for discard

The end to end throughput and goodput map directly to
the performance of a virtual combined classi er with PD =
gN and PF = tN − gN . Hence, as for a single classi er [7],
we may de ne the performance of this cascade in terms of
utility U = PD−ΘPF or U = (1+Θ)gN−ΘtN , whereΘ is
a control parameter that de nes the desired tradeoff between
false alarms and misses.

2.2. Resource Consumption for Classi ers

The performance of each classi er may be modi ed by chang-
ing its underlying model complexity, as well as selecting its
operating point, i.e. individual pD-pF tradeoff on the Detec-
tion Error Tradeoff (DET) curve. This may also affect the
resource consumption of future classi ers in the cascade as it
changes the amount of data ltered through. Consider a sim-
ple example of a Gaussian Mixture Model (GMM) classi er
using the likelihood ratio test. Changing the model complex-
ity corresponds to changing the number of Gaussians in the
mixture, while changing the operating point corresponds to
using a different threshold during the likelihood ratio test. We

original data set, without assumptions on cascaded data ltering. The training
of classi ers given the cascade structure is an important direction for future
research.

represent the model complexity of classi er Ck as Qk, and
the operating point in terms of the corresponding pk

F . We
consider two different types of resource consumption mod-
els, one for rate-independent resources (e.g. Memory) and
the other for rate-dependent resources (e.g. CPU). We model
rate-independent resource consumption as fk(Qk) = ηkQk,
with ηk a constant that depends on data dimensionality, model
parameter set (means, covariances), points (for lookup) stored
per Gaussian, and the underlying system architecture. The
rate-dependent resource consumption depends on operating
points and complexities of C1..Ck as well as the input data
rate w and may be de ned as:

hk(Q1→k,pF
1→(k−1)) = wγkQktk−1 (3)

where γk is a constant similar to ηk (in general γk �=ηk). Fur-
thermore, pF

1→(k−1) =
[

p1
F · · · pk−1

F

]T andQ1→k =[
Q1 · · · Qk

]T , where T denotes the transpose. The re-
source consumption of the N classi ers may be aggregated
into vectors as:

f(Q) =
[

η1Q1 η2Q2 · · · ηNQN
]T

h(Q,pF) =
[

wγ1Q1t0 · · · wγNQN tN−1
]T

.
(4)

2.3. Distributed Classi er Cascade

In a distributed streaming system these N classi ers may be
distributed acrossM servers. We de ne a location variable lk

with lk = m implying Ck is placed on serverm2. Hence, we
construct a location matrix, A = {ai,j}M×N with ai,j = 1
if lj = i and zero otherwise, to represent the location of the
N classi ers across the M servers. If the available rate in-
dependent resources on server m are represented as Lm and
the rate-dependent resources as Rm, we may capture the re-
sources available overM servers asLtot =

[
L1 · · · LM

]T ,
andRtot =

[
R1 · · · RM

]T .

2.4. Con guring Classi ers under Resource Constraints:
Formulation

The problem we are trying to solve is to optimally con gure
(determine the model complexity Qk and the operating point
pk

F for each classi er) the cascade of classi ers to maximize
the utility given the distributed resource constraints. This
combined optimization may be formulated as:

maxQ,pF
U(Q,pF)

s.t. Af(Q) ≤ Ltot andAh(Q,pF) ≤ Rtot

(5)

The optimal con guration is selected from among the feasible
set of complexitiesQk (Qk∈Qk) and operating points P(Qk)
(pk

F∈P(Qk)). Additionally, we use x ≤ y to represent xi ≤

2We assume a forward ow cascade, i.e. if k0 < k1, we have lk0
≤lk1

.
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yi with 1 ≤ i ≤ D for D dimensional vectors. A pure rate-
independent (rate-dependent) constraint optimization may be
solved for by settingRtot = Inf (Ltot = Inf ).
In terms of the geometric interpretation mentioned earlier,

these optimizations involve determining the optimal path in
the operating performance space that satis es the underlying
resource constraints.

3. SOLUTION: RATE-INDEPENDENT
CONSTRAINTS

Consider, without loss of generality, a case with two clas-
si ers on one machine with a given desired Θ. Consider
two complexity con gurations of these classi ers: a) Q1 =
0, Q2 = Ltot and b) Q̄1 = L, Q̄2 = Ltot − L, i.e. op-
erate classi er 1 as an all pass lter in scenario (a). Under
these complexities, let the classi ers be tuned to the opti-
mal operating points (1, 1), (p2

F , p2
D) and (p̄1

F , p̄1
D), (p̄2

F , p̄2
D)

respectively. Note that because of the higher resource allo-
cation to classi er 2 in case (a), we can easily show that
p2

D − Θp2
F≥p̄2

D − Θp̄2
F . By writing out the respective ma-

trices Tk, we may compute the corresponding utilities U and
Ū respectively. With some tedious algebra, and using these
properties, we can then show that U≥Ū for all values of Θ.
Intuitively, this makes sense as the rst classi er does not help
alleviate the resource requirements for the second classi er,
and only ends up erroneously discarding some correct data
early. This idea can be extended to N exclusive classi ers,
and we may conclude that under rate-independent constraints,
it is always better to allocate all available resources to the last
classi er in the chain.

4. SOLUTION: RATE-DEPENDENT CONSTRAINTS

Unlike for the rate-independent constraints, a cascade of clas-
si ers is often necessary to meet rate-dependent constraints.
This is because early simple (low-complexity) classi ers may
be used to reduce the rate of data ow, thereby alleviating the
resource requirements of future classi ers. The correspond-
ing savings in resources, often outweigh any misclassi ca-
tions by the early classi ers in the cascade. In this section, we
use a Viterbi-like search strategy to con gure the cascaded ex-
clusive classi ers by selecting the operating points and model
complexity, under rate-dependent resource constraints.

4.1. Viterbi-like Search Strategy

Note that the Viterbi decoding algorithm is useful when the
feasible con guration set is nite and limited. At classi er
Ck, there are |Qk| feasible complexity points and |P(Qk)|
feasible operating points to select for each complexity Qk,
where | • | is the cardinality of the set. Over the entire chain,
there are

∏N

k=1

∑
Qk∈Qk |P(Qk)| combinations, which can

grow prohibitively large. However, we may use the follow-
ing proposition to limit the number of points that need to be
searched in a Viterbi-like search strategy.

Proposition 1 For classi erCk the point (t̂k, ĝk) cannot lead
to better end-to-end utility than (tk, gk) if either of the two
following conditions are satis ed:
1) t̂k≥tk and ĝk≤gk

2) 0≤tk − t̂k≤gk − ĝk

Proof. Consider that the best end-to-end utility that can be
achieved given point (tk, gk) is U (correspondingly Û for the
other point). This end-to-end utility may be written as:

U =

[
−Θ

1 + Θ

]T

TN · · ·Tk+1

[
tk

gk

]
=

[
x

y

]T [
tk

gk

]
(6)

It is straightforward to show that x≤0 and y≥0. If condition
1 holds, it is evident that U≥Û independent of the actual val-
ues of x and y. If condition 2 holds, then we can create an
intermediate point (tkrem, ĝk), with resulting best utility Urem

by removing purely good (i.e. correctly classi ed) data frac-
tion gk − ĝk from (tk, gk). Note that, since we discard only
correctly classi ed data, it is guaranteed that U≥Urem. Fur-
thermore, we observe that

tkrem = tk − (gk − ĝk) ≤ tk − (tk − t̂k) = t̂k (7)

directly from condition 2. Now we may use condition 1 to
show that Urem≥Û . This means that U≥Urem≥Û , thereby
proving the proposition. �
We may use the above proposition to discard search can-

didates given the resource constraints. For each (tk, gk) we
compute the rate-dependent resources consumedRcon

lk
on server

lk due to classi ers C1 through Ck. We can then discard all
(t̂k, ĝk) that satisfy Proposition 1 and the conditionRcon

lk
≤R̂con

lk
,

i.e. all points that cannot lead to better utility while consum-
ing more resources up to this machine3. Additionally, we
also discard points (t̂k, ĝk), if the point (tk, gk) is feasible in
the worst future case, i.e. resource consumption up to Ck is
such that Ck+1..CN can be operated at maximum complex-
ity without violating the end-to-end resource constraint, i.e.
Rproj

max ≤ Rtot, where Rproj
max is the projected resource con-

sumption assuming the maximum complexity for Ck+1..CN .
Finally, we also discard points (t̂k, ĝk) that violate the CPU
constraint up to the current classi er. An illustration of the
set of points that can be discarded is shown graphically in
Figure 2 b. The designed strategy is shown in Algorithm 1.

5. EXPERIMENTAL RESULTS

We consider a speaker veri cation task, where we want to
verify whether speech samples belong to a particular female
speaker. We build a cascade of two classi ers for this task,
with C1 being a gender detector (i.e. forwards only female
speech) and C2 being the actual speaker veri er (tries to ver-
ify whether speech belongs to speci c speaker). These clas-
si ers are trained on real Switchboard telephony data with

3We do not consider servers 1..lk−1 due to the forward ow assumption
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Algorithm 1 Viterbi-Like Search Strategy
Set (t0, g0) = (1, 1) and k = 0
repeat
Forward. For each (tk, gk) generate possible
(tk+1, gk+1) and computeRcon

lk+1

Pruning 1. Discard (tk+1, gk+1) ifRcon
lk+1 > Rlk+1

Pruning 2. Discard (t̂k+1, ĝk+1) if ∃ (tk+1, gk+1) s.t.
Proposition 1 is satis ed andRcon

lk+1 ≤ R̂
con
lk+1 orRproj

max ≤
Rtot.
k ⇐ k + 1

until k = N

From remaining points pick point that maximizes utility.
return (Q,pF)

176 female speakers, and 106 male speakers using the IBM
speaker veri cation system [8] at complexities (number of
Gaussians in the GMM) of Q1 ∈ {8, 16, 32, 64} and Q2 ∈
{8, 16, 32, 64, 128}. Our experimental setup is described in
more detail in [7]. We assume that the classi ers are located
on one machine with γ1 = γ2 = 1, and we use Θ = 0.1
corresponding to the cost-tradeoff between misses and false
alarms in NIST testing scenarios. We vary the rate-dependent
resource constraint R1∈{40, 80, 160} and show examples of
the selected optimal operating point and classi er complexity
(using the Viterbi-like strategy) in Figure 5. The rst thing we
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Fig. 3. Experimental Results: Speaker Veri cation
observe is that, as the resource constraint is relaxed, the clas-
si ers expectedly use higher complexity, and improve their
utility. It is more important to notice that by providing a small
amount of resources to (simple) C1, C2 can operate at very
high model complexity, while satisfying resource constraints.
We highlight this, by comparing the utility derived from the
cascade against using only the speaker veri er in Table 1.

Table 1. Utility (U × 100) Under Resource Constraints.
Classi er Topology R1 = 40 R1 = 80 R1 = 160
Cascade: C1→C2 0.17 0.27 0.32
No Cascade: C2 0.03 0.15 0.30

Clearly, under resource constraints, a classi er cascade
(even with independently trained classi ers), outperforms a
single classi er. As the available resources increase, the gains
from using a cascade decrease, as expected. We also com-
pare the complexity of our Viterbi-like strategy against a full

search, and observe savings (in terms of the number of points
in the search space) of a factor of 10-100 for this two classi-
er cascade. We also explored a more general topology with 6
simulated classi ers (over 3 machines), and observe savings
of up to a factor of 106 over the exhaustive strategy, while
achieving the optimal utility. Note that the actual savings de-
pend on the classi er characteristics, the topology, and the
resource constraints (with higher savings under tight resource
constraints).

6. CONCLUSION
In this paper we design an algorithms for optimally con gur-
ing cascaded exclusive classi ers, on distributed systems, un-
der resource constraints. We show that a classi er cascade de-
generates into a single classi er under rate-independent con-
straints. We then propose a Viterbi-like search strategy to de-
termine the optimal operating points and classi er complexi-
ties under rate-dependent constraints. We examine the perfor-
mance of this strategy on a cascade of two classi ers (gender
detector followed by a speaker veri er) in a real speaker veri-
cation system. We show that under resource constraints, this
cascade outperforms a single classi er. The computational
complexity of the Viterbi-like strategy is 10-100 times lower
than an exhaustive search, while guaranteeing solution opti-
mality. Under simulated scenarios with 6 classi ers, we have
observed complexity savings of up to a factor of 106. There
are several directions for future research. We would like to
extend these ideas for more complex topologies and also con-
sider the construction of such topologies, including the train-
ing of classi ers speci c to a cascaded structure. We would
also like to examine the cascade performance in dynamically
varying scenarios.
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