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ABSTRACT

A new Lagrangian formulation with entropy and codebook
size was proposed to extend the Lagrangian formulation of
variable-rate vector quantization. We use the new Lagrangian
formulation to perform clustering and to nd the number of
clusters by tting mixture models to data using vector quanti-
zation. Experimental results show that the entropy and mem-
ory constrained vector quantization outperforms the state-of-
the art model selection algorithms in the examples consid-
ered.

Index Terms— Clustering, Vector Quantization, Mixture
Models

1. INTRODUCTION

In pattern recognition, it is important to nd the underlying
distribution of given data. Cluster analysis is often used to
estimate the underlying distribution, and selecting the num-
ber of clusters is a crucial part in clustering. Estimating the
number of clusters has been actively studied over the years
and many algorithms have been suggested, including an EM-
based approach [12] with complexity penalties [17][14], a
Bayesian approach [18], and an information theoretic approach
[19]. Estimating the number of clusters is not only a dif -
cult problem in unsupervised learning where the number of
classes is unknown in advance, but also is an important issue
in supervised learning when the number of components to t
a mixture model to each class must be estimated.
Vector quantization (VQ) design [5] can be used to clus-

ter data because in VQ an input vector is represented by one
of a prede ned set of patterns on the basis of which pattern
is closest to the given input vector. VQ has been used suc-
cessfully in pattern recognition, including speech and image
processing [1][10][7]. VQ design can be also viewed as tting
a model when partition cells are represented by their condi-
tional probability density functions and prior probabilities are
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weights. In particular, we are interested in tting Gauss mix-
ture models (GMM) to data in VQ design (Gauss mixture VQ
or GMVQ) [8][7], but our algorithm can be generalized to
any type of model-based clustering. See usefulness of mix-
ture models in [17].
In [2][3][4], an iterative model selection algorithm using a

Lagrangian formulation with entropy and codebook size con-
straints was proposed and an optimization step for pruning an
encoder partition of unneeded cells was added to the general-
ized Lloyd algorithm [5]. The algorithm in [2][3][4] prunes
codewords (or clusters) iteratively if so doing decreases a La-
grangian distortion. We follow this idea of pruning codewords
in tting GMMs.
The rest of paper is organized as follows: In Section 2, we

brie y review VQ. In Section 3, we present our realization of
the Lagrangian formulation with combined entropy and code-
book size constraints in [2][3][4] for tting a GMM. In Sec-
tion 4, we show experimental results in nding the number of
clusters on both synthetic and real world data sets. Finally we
conclude in Section 5.

2. BACKGROUND

A vector quantizer of dimension p (the number of features is
p) and size K (the number of clusters is K) is made up of an
encoder α, a decoder β, and a length function l. An encoder α
is a mapping of an input vector x in p-dimensional Euclidean
space,Rp, into an index i ∈ I = {1, 2, . . . , K}. The encoder
is described by a partition S = {Si : i = 1, 2, . . . , K} such
that Si = {x : α(x) = i}. A decoder β converts the index
into a source reproduction x̂, and β is associated with a re-
production codebook C = {β(i) : i ∈ I}. Finally, a length
function l measures the cost or instantaneous rate of an index
i, and it is admissible if

∑
i∈I e−l(i) ≤ 1. Both l and the re-

quirement of admissibility will be seen to be closely related
to the ”prior probability” of the cluster indexed by i. For a
xed-rate quantizer, l(i) is xed at lnK for all i. Otherwise,
a quantizer is said to be variable-rate. The symbol q denotes
the overall mapping q(x) = β(α(x)).
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The performance of a quantizer can be measured by the
quality of its reproduction and the average rate of the repro-
duction index. We assume that X is a random vector de-
scribed by density f . The reproduction quality can be mea-
sured by average distortion between inputX and reproduction
X̂ (=β(α(X))):

Df (q) = Efd(X, X̂) = Efd(X, β(α(X))).

The average index cost is measured by an average rate
incorporating both an average length and a codebook size
penalty [2][3][4]:

Rf (q) = (1 − η)Ef (l(α(X))) + ηlnK(q) (1)

where K(q) is the number of codewords (or clusters) of q
and η ∈ [0, 1]. When the length function is optimized over
all admissible length functions (l(i) = -lnPr(α(X) = i)),
Ef (l(α(X))) becomes the Shannon entropy of encoder out-
put (Hf (q)) [9][2][3][4]. The codebook size constraint can
be interpreted as a constraint on memory [2][3][4]. Given a
Lagrangian multiplier λ > 0, de ne the Lagrangian distortion

ρ(λ, x, i) = d(x, β(i)) + λ[(1 − η)l(i) + ηlnK(q)](2)

where β(i) = β(α(x)). Then the expected Lagrangian dis-
tortion is

ρ(f, λ, η, q) = Df (q) + λRf (q)
= Efd(X, β(α(X)))

+λ[(1 − η)Ef (l(α(X))) + ηlnK(q)].(3)

We are interested particularly in GMVQ, where we t a
Gauss mixture model (GMM) to data using the Lloyd algo-
rithm with a suitable distortion measure [7]. The EM algo-
rithm [12] is the most popular approach to tting a GMM to
data, but the Lloyd algorithm provides an alternative. The
main difference between the Lloyd and the EM algorithms is
that the EM ts a GMM to each observed vector, whereas
the Lloyd ts a single component of a GMM to each ob-
served vector. This ”hard” assignment of components to ob-
served data is based on the information theoretic property of
the Gaussian density being a ”worst case” for designing ro-
bust compression/source coding systems [7][9]. In GMVQ,
each cluster is represented by its prior probabilitywi ( wi ≥ 0
and

∑K
i=1 wi = 1) and a cluster conditional pdf gi(x), which

is a multivariate Gaussian:

gi(x) = g(x|α(x) = i)

=
exp

(
− (x−μi)

tΣ−1
i (x−μi)

2

)
(2π)p/2|Σi|1/2

(4)

where g is a tted GMM, and μi and Σi are the mean vec-
tor and covariance matrix of cluster i, respectively, and we
assume Σi to be non-singular.

The quantizer mismatch (QM) distortion was used to de-
sign GMVQ in [7], and it can be interpreted as the maximum
a posteriori (MAP) selection of a Gaussian component from
a collection of Gauss models gi with a probability mass func-
tion wi if the unknown source f is in fact a GMM. In [7],
to have exible control over the number of components in a
GMM, the QM distortion is modi ed to have a general multi-
plier λ for a log probability term lnwi:

dQM,λ(x, i) = dGMV Q(x, i) − λlnwi, (5)

where dGMVQ(x, i) = 1
2 (x − μi)tΣ−1

i (x − μi) + 1
2 ln|Σi|.

3. VECTOR QUANTIZATION FOR UNSUPERVISED
FITTING OF GAUSS MIXTURE MODELS

The new rate term in (1) is an explicit function of the num-
ber of clusters. Thus it will allow us to have better control
over the number of components than just using the entropy
term Hf (q) by penalizing complex models with large num-
ber of clusters. Incorporating this new rate term into the QM
distortion in (5), we have the following distortion function

dQM,λ(x, i) = dGMVQ(x, i) − λ [(1 − η)lnwi

+ηlnK(q)] . (6)

We use the Lloyd algorithm to t a GMM and estimate the
number of components simultaneously by minimizing the av-
erage distortion, EfdQM,λ(X,α(X)), iteratively. When the
true distribution f is unknown, minimization of the sample
average,

∑N
n=1 dQM,λ(xn, α(xn)), is used for a training set

{x1, x2, .. ., xN}.
Using the Lloyd optimality conditions for encoder, de-

coder, length function and partition in [4], for η ∈ [0, 1), the
complete optimization steps of our algorithm for the modi ed
QM distortion in (6) are

• For a given decoder β, length function l, and the num-
ber of clustersK, the optimal encoder is

α(x) = argmini(dGMVQ(x, i) + λ(1 − η)l(i)).

• For a given encoder α, length function l, and the num-
ber of clustersK, the optimal decoder is

β(i) = argminyE(dGMVQ(X, y)|α(X) = i) = N (μi,Σi)

where μi = E(X|α(X) = i) and Σi = E((X −
μi)(X − μi)t|α(X) = i).

• For a given encoder α, decoder β, and the number of
clustersK, the optimal length function is

l(i) = −ln(Pr(α(X) = i)),

and Pr(α(X) = i)�= 0 for i ∈ I.
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• A necessary condition for a partition S to be optimal is
that there is no subpartition S ′ ⊂ S for which

dGMVQ(f, q′) + λ((1 − η)Hf (q′) + ηlnK ′)

≤ dGMVQ(f, q) + λ((1 − η)Hf (q) + ηlnK)

where K ′ is the number of clusters of a subpartition
S ′
, and q′ and q are optimal quantizers for S ′

and S,
respectively.

Note that the lnK term plays a role only in optimizing the
number of clusters. The subpartition S ′ has either cells of S or
unions of cells of S. The number of subpartitions of S (|S| =
K) is KC2 +K C3 + ...+K CK , where KCi = K!/i!(K− i)!.
To reduce searching complexity of candidate subpartitions,
we use the pairwise nearest neighbor algorithm (PNN) [6]. In
using PNN, we merge clusters which maximally decrease the
average distortion

∑N
n=1 dQM,λ(xn, α(xn)).

The proposed algorithm starts with large number of clus-
ters and we use a tree-structured VQ [5] to obtain the initial
clustering and corresponding parameters (μi, Σi, andwi). We
grow a tree until the number of leaf nodes reaches at Kmax.
Then we iteratively prune clusters as we optimize encoder, de-
coder, length function and the number of clusters. We repeat
these four optimization steps until convergence is reached.
To avoid singular covariance estimates, we use the regu-

larization technique in [15]. We rst regularize the sample-
based estimates by the pooled covariance and we further reg-
ularize by a multiple of the identity matrix, which effectively
decreases the larger eigenvalues and increases the smaller eigen-
values.

4. EXPERIMENTAL RESULTS

In this section, we test our algorithm on synthetic and real
world data sets. We compare our algorithm with two other
model selection algorithms that are tting mixture models by
the EM algorithm. Figueiredo et al. proposed a model selec-
tion algorithm using the minimum message length criterion
(MML) [17] (termed EM-MML hereafter), and Dy et al. pro-
posed a model selection algorithm using the Bayesian infor-
mation criterion (BIC) [14] (termed EM-BIC hereafter). They
both use the EM algorithm to t GMMs, but they differ in
estimating the number of clusters. EM-MML prunes a clus-
ter with minimum weight in each iteration, and then runs the
EM to t a GMM. It nally selects the best model based on
the MML criterion. However, EM-BIC merges clusters based
on the method in [16], and selects the best model based on
the BIC. Note that Dy et al. also proposed to perform fea-
ture selection along with estimating the number of clusters,
but we only run their algorithm without feature selection for
fair comparison. GMMs are tted by all three model selec-
tion algorithms, and they are compared in terms of estimat-
ing the number of clusters and classi cation performance as

described in [13]. We preprocess all data sets so that each
feature in each data set has zero mean and unit variance. As
stated in [4], we are interested in the behavior of codebook
size in (3) for small values of η. Thus we set η to 0.2 in (6).
The Lagrangian parameter λ in (6) is set to 1 and 3 for syn-
thetic data set and real world data sets, respectively. Anecdo-
tal evidence suggests that as the dimension of feature vector
increases or data become sparse, merging or pruning clusters
become harder. In this paper, we do not attempt to nd opti-
mal values of η and λ. The values are chosen based on our
intuition and some trial and errors.
We run the model selection algorithms on three synthetic

data sets in an unsupervised manner. We t a GMM to each
data set according to each model selection algorithm and record
the number of clusters of a GMM. The rst synthetic data set
has 1000 samples generated from two Gaussian clusters

μ1 =
[

0
0

]
, Σ1 =

[
1 0
0 1

]
, w1 = 0.8;

μ2 =
[

2
2

]
, Σ2 =

[
1 1
1 1.5

]
, w2 = 0.2.

The second synthetic data set has 900 samples from three
equiprobable Gaussian clusters with means at (0,-2), (0,0) and
(0,2), and equal covariance matrices diag(2,0.2). The third
synthetic data set has 800 samples from four equiprobable
Gaussian clusters with means at (0,3), (1,9), (6,4) and (7,10)
and equal covariance matrices diag(1,1). For each data set,
we randomly generate data 50 times andKmax is set to 30.
Table 1 shows unsupervised learning results on the three

synthetic data sets. As can be seen from Table 1, Lloyd and
EM-BIC perfectly identify the number of clusters, whereas
EM-MML makes mistakes in the two- and four- cluster data
sets.
We also test the model selection algorithms on two real

world data sets from the UCI learning repository: the image
data set and the handwritten digit data set with 47 zernike
moments. The image data set is the image segmentation data
set, and contains 2,320 samples. The image data set has seven
classes: brickface, sky, foliage, cement, window, path, and
grass, and 18 features are extracted from a 3 × 3 region. The
zernike data set is the handwritten digit recognition data set,
and has 200 images for each digit (i.e., 2000 images in total).
For the real world data sets, we randomly divide each data

set into two sets of equal size: a training set and a test set. We
rst perform unsupervised learning for the three algorithms
on training data. We record the estimated number of clus-
ters. We do not use any class label information in the training
stage. After unsupervised learning, we label each cluster by
majority vote using the class labels provided, and we evaluate
three algorithms by classifying test samples. We repeat this
random division of half and testing twenty times. Table 2 and
3 shows results on the two real world data sets. Kmax is also
set to 30. In the image data set, both Lloyd and EM-MML
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estimate about two clusters per class, but Lloyd shows bet-
ter classi cation performance than EM-MML. In the zernike
data set, although Lloyd and EM-MML estimate about one
cluster per class, Lloyd outperforms EM-MML. According
to [13], EM-MML uses the number of classes as the lower
bound for estimating the number of clusters. EM-BIC shows
the worst classi cation performance for both the image and
zernike data sets. This can be attributed to the under tting of
EM-BIC. In particular, it uses only about two clusters in the
zernike data set although there are ten classes.

Table 1. Average number of clusters. Results on three synthetic
data sets. Numbers in parenthesis are standard deviations.

Lloyd EM-MML EM-BIC

Two-cluster data set 2(0) 2.06(0.24) 2(0)
Three-cluster data set 3(0) 3(0) 3(0)
Four-cluster data set 4(0) 4.06(0.42) 4(0)

Table 2. Image data set: seven classes.

Lloyd EM-MML EM-BIC
Avg # of clusters 14.6(1.32) 13.8(1.94) 11.8(1.22)
Avg misclassi cation (%) 21.54(4.9) 32.84(5.1) 34.39(4.47)

Table 3. Zernike data set: ten classes

Lloyd EM-MML EM-BIC
Avg # of clusters 9.65(1.77) 10(0) 1.8(0.4)
Avg misclassi cation (%) 34.87(7.1) 56.42(3.62) 84.03(3.67)

5. CONCLUSIONS

Our algorithm ts GMMs for clustering and attempts to nd
an optimal number of clusters by pruning clusters iteratively.
Experimental results on both synthetic and real world data
sets show that the entropy and memory constrained VQ is su-
perior to the state of the art model selection algorithms on
these data sets.
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