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ABSTRACT

This paper presents a Bayesian technique aimed at classifying sig-
nals without prior training (clustering). The approach consists of
modelling the observed signals, known only through a nite set of
samples corrupted by noise, as Gaussian processes. As in many
other Bayesian clustering approaches, the clusters are de ned thanks
to a mixture model. In order to estimate the number of clusters,
we assume a priori a countably in nite number of clusters, thanks
to a Dirichlet process model over the Gaussian processes parame-
ters. Computations are performed thanks to a dedicated Monte Carlo
Markov Chain algorithm, and results involving real signals (mRNA
expression pro les) are presented.

Index Terms— Clustering, Gaussian Process, Dirichlet Process,
MCMC, interpolation.

1. INTRODUCTION

In this paper, we consider the problem of classifying a set a N sig-
nals into an unknown number k of classes without prior training
(in the following, this problem is termed clustering). We adopt a
functional viewpoint [1] in which a sampled signal is considered
as the observed counterpart of an underlying unobserved function.
An important point is that the approach can be implemented with
signals in one or more dimensions, which may have been sampled
at different points. More precisely, consider the set of functions
X = {x1(·), . . . ,xN (·)} where each xi(·) is a function to be as-
signed to a class. Each xi(·) is known through a set of observed
points (yi,j , ti,j), j = 1, . . . , Ti called a signal si (i = 1, . . . , N )
where yi,j ∈ Y and ti,j ∈ T. The space Y where the yi,j lie is
typically R, while the coordinate space T is typically Rd (in the gen-
eral case, it is assumed to be a Hilbert space). A signal si is related
to its underlying function by the relation yi,j = xi(ti,j) + εi(ti,j)
where εi(·) is a white noise process on T, assumed Gaussian and
zero-mean, with variance σ2ε . Moreover, the εi’s are assumed inde-
pendent from each other. The problem consists of assigning a class
label zi = l to each xi(·) (that is, to each si), i = 1, . . . , T , where
l ∈ {1, 2, . . . , k} . Here, we do not assume that the ti,j’s are the
same from one signal to another, and we do not need Ti = T for all
i.

Functional clustering problems arise in many areas. Example
signals are daily load curves of Internet servers, mNRA expression
pro les (see Section 5), image textures, etc. Most Bayesian cluster-
ing methods consist of de ning a mixture model over the data, or
over the parameters of some signal model. More precisely, assume
the signals follow si ∼ f(si|θi) for i = 1, . . . , N , where θi ∈ Θ is
the parameter of some model for the signal si, f(·|·) is the likelihood
and ∼ means ’distributed according to’. A mixture model is given

by the joint probability distribution function (pdf)

p(s1, . . . , sN |k, ω1:k, φ1:k) =
NY
i=1

p(si|k, ω1:k, φ1:k)

=
NY
i=1

kX
l=1

ωlf(si|θi = φl)

(1)

and it is fully determined by k, φ = {φ1, . . . , φk} and ω =
{ω1, . . . , ωk} with ω1 + . . . + ωk = 1. Clustering is performed
by noting that writing si ∼ p(si|k, ω1:k, φ1:k) is equivalent to

zi ∼ Pr(zi|ω) where Pr(zi = l|ω) = ωl (2)

si ∼ f(si|θi = φzi) (3)

and performing inference on the zi’s. Several approaches have been
proposed to tackle the numerical estimation, such as the Expectation-
Maximization algorithm. This requires, however, that the number k
of clusters in known. Here, we want to avoid this assumption, and
we resort to a Bayesian approach, where k is estimated. This can
be done by de ning a prior distribution over k, and estimating it (to-
gether with the zi’s) by Markov Chain Monte Carlo (MCMC) com-
putations – see [2] for the case where f(·|·) is a one-dimensional
Gaussian density. Here, we consider the so-called Dirichlet Pro-
cess Mixture (DPM) model (see [3] and references therein for an
overview), which extends the nite mixture model of Eq. (1), see
Subsection 1.1 to an in nite mixture. Also, we note that the mixture
model in Eq. (1) applies to our functional clustering if we are able
to de ne the likelihood f(·|·) in a convenient way. This is done via
Gaussian Processes (GPs), which are brie y presented in Subsec-
tion 1.2 below (see also [4] for an introduction).

1.1. Dirichlet Process Mixtures

Let
`
Θ,B(θ)

´
be a measurable space, andG(dθ) =

Pk

l=1 ωlδφl(dθ)
be the mixing distribution, where δ is the Dirac delta function. Then
in Eq. (1)

p(si|k, ω1:k, φ1:k) =

kX
l=1

ωlf(si|θi = φl) (4)

=

Z
Θ

f(si|θ)G(dθ) (5)

DPMs are de ned by replacing G(dθ) in Eq (5) by the in nite
sum

G(dθ) =

∞X
l=1

ωlδφl(dθ) (6)
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where the cluster locations θl are distributed according to G0(dθ)
and the weights ωl follow the so-called stick-breaking representation

ωl = βl

l−1Y
m=1

(1− βm) and βl ∼ B(1, α) (7)

where B denotes the Beta distribution. The distribution G de ned
above (or, equivalently, the set {ωl, φl}l=1,2,...) is the random out-
come of a so-called Dirichlet Process denoted DP(G;α,G0). The
resulting in nite mixture model is a DPM with the hierarchical struc-
ture:

G ∼ DP(G;α,G0) (8)

θ ∼ G(dθ) (9)

s ∼ f(s|θ) (10)

and we seen that the class label is implicitly selected in Eq. (9)
when θ is sampled. Several signals si’s are generated by iterating
Eq.’s (9)–(10), with xed G. In order to introduce the class labels z,
one notes that Eq. (9) may be replaced by

z ∼ Pr(z|G) where Pr(z = l|G) = ωl in Eq. (7) (11)

θ = φz (12)

When sampling a nite set of signals {s1, . . . , sN} using the
DPM model, a nite number k of different zi’s is used. For largeN ,
E [k|α,N ] � α log(1 + N

α
), thus the effective number of classes is

tuned by α.
An appealing feature of the DPM model is the so-called Polya

urn, which provides the conditional distribution of the parameter θi
related to a signal si, as follows:

p(dθ|θ1, . . . , θN ) =
1

α+N

"
NX
i=1

δθi(dθ) + αG0(dθ)

#
(13)

As can be seen, the Polya urn practically integrates out the Dirichlet
Process G and it makes explicit the role of α.

1.2. Gaussian Processes

Gaussian processes [4] extend multivariate Gaussians to (non count-
ably) in nite dimensional random variables. A Gaussian process,
denoted GP

`
m(·),K(·, ·)

´
is characterized by its mean function

m(·) and its covariance functionK(·, ·), and its outcomes are func-
tions. Assume x(·) is a realisation of a Gaussian process

x(·) ∼ GP
`
x(·);m(·),K(·, ·)

´
(14)

then {yj = x(tj)+ε(tj)}j=1,...,T is a T -dimensional Gaussian ran-
dom variable with mean vectorm = {m(tj)}j=1,...,T and covari-
ance matrix K = {K(tj , tj′) + δtj ,tj′σ

2
ε}(j,j′)=1,...,T . Gaussian

processes are useful to interpolate a signal si = {(yi,j , ti,j), j =
1, . . . , Ti} at point t �= ti,j , since p(y|si, t) equals

N
`
y;m(t) + κT

K
−1
(yi −m),K(t, t)− κ

T
K
−1
κ
´

(15)

where κ = {K(t, tj)}j=1,...,T , yi = {yi,1, . . . , yi,Ti} and
N (·; a, b) is the Gaussian distribution with mean vector a and co-
variance matrix b. We see that considering noisy observations is es-
sentially equivalent to considering unnoisy observations, but a slight
modi cation of the covariance functionKnoisy(t, t

′) = Kunnoisy(t, t
′)+

δ(t = t′)σ2ε . Thus, in the following, we assume that the signals
generated by a GP are unnoisy, without loss of generality. More
generally, the covariance function tunes the “roughness” of the re-
alizations x(·). Almost surely, smooth covariances result in smooth
functions while rough covariances give rise to rough functions.

1.3. Contributions and paper organisation

The main contribution of this paper is to propose a model where sig-
nals are modelled as GPs whose parametersm(·) andK(·, ·) deter-
mine the clusters. Clustering is performed by applying a DPM over
the GP parametersm(·) andK(·, ·). The complete Bayesian model,
referred to as Dirichlet Process Mixture of Gaussian Processes (DP-
MGP), is derived in Section 2 via the selection of convenient priors.
Thanks to an ef cient MCMC procedure (Section 3), this model en-
ables the estimation of class labels. It also provides the mean and
covariance functions of each class, thus enabling class-dependent
signal interpolation. In Section 4, we discuss several features of the
model and of the algorithm, and link them to previous works. Simu-
lation results are presented in Section 5, for synthetic signals as well
as biological sequences (mRNA expression data). Section 6 presents
some conclusions and future work directions.

2. A BAYESIAN DPMGP MODEL

The Bayesian unsupervised classi cation model is given by

G ∼ DP(G;G0, α) (16)

m(·),K(·, ·) ∼ G
`
d(m(·),K(·, ·))

´
(17)

x(·) ∼ GP
`
x(·),m(·),K(·, ·)

´
(18)

yj = x(tj) for j = 1, . . . , T (19)

An equivalent model can be written by letting the cluster variable
z appear in Eq. (17), see Subsection 1.1. In order to fully de ne
this model, we need to select the prior G0

`
m(·),K(·, ·)

´
. Here, we

select the following hierarchical shape

G0

`
m(·),K(·, ·)

´
= G

1
0

`
m(·)|K(·, ·)

´
G
2
0

`
K(·, ·)

´
(20)

2.1. Prior distribution for the mean function

A very natural choice for G1
0

`
m(·)|K(·, ·)

´
is the zero-mean GP

with covariance functionK(·, ·)

G
1
0

`
m(·)|K(·, ·)

´
= GP(m(·); 0,K(·, ·)

´
(21)

Another possibility is to model the mean function by a paramet-
ric model. For the simulations presented in Section 5, we have cho-
sen to select the most simple model by letting G1

0

`
m(·)|K(·, ·)

´
=

δ0
`
m(·)

´
(that is, by considering that the functions xi’s are gener-

ated from zero-mean GPs). Indeed, in the applications presented,
simulations showed that the covariance function is a much more dis-
criminant feature than the mean, thusm(·) has less importance, and
it can be forced to zero without lowering the performance.

2.2. Prior distribution for the covariance function

Following several previous works [5], we adopt the following para-
metric shape for the covariance function (assuming T = Rd for pre-
sentation simplicity)

K(t1, t2) = a0 + a1

dX
q=1

tq1t
q
2 + a2 exp

 
−
1

2

dX
q=1

bq|t
q
1 − t

q
2|
2

!
(22)

where tqj is component #q in vector tj . Eq. (22) is a linear com-
bination of the linear covariance and the Gaussian covariance, thus
ensuring that K(·, ·) is indeed de nite-positive [6]. This model can
be easily generalized to linear combinations of other kind of covari-
ance (for example, a periodic covariance function is used in Subsec-
tion 5.2). Also, a diagonal term σ2ε δt1,t2 could be added to take ac-
count of the observation noise ε. In order to fully de neG2

0

`
K(·, ·)

´
,
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we need to assign prior distributions to the parameter
θ = {a0, a1, a2, b1, . . . , bd}. We assign an inverse Gamma prior
over each of the components of θ, thus G2

0

`
K(·, ·)

´
= G

2
0

`
θ) is the

product of d+ 3 inverse Gamma distributions.

2.3. Estimation objectives

Given parametric models for m(·) and K(·, ·), and N signals s1,
. . ., sN , the objective is to estimate the N class labels z = {zi, i =
1, . . . , N} as well as the locations φ = {φl, l = 1, . . . , k} such
that θi = φzi . The zi’s provide the required classi cation while the
φl’s give the GP parameters that best explain the signals such that
zi = l. In the following, we denoteml(·) andKl(·, ·) the mean and
covariance functions computed with the parameters θ = φl.

3. A MCMC ALGORITHM FOR DPMGP

In this section, we describe the MCMC algorithm used to generate
samples ez(n)i , eφ(n)i (n = 1, 2, . . .) from their joint posterior proba-
bility, to be used to estimate z and φ from the signals si’s. Follow-
ing [7, Algorithm 5]), we implement a Gibbs sampler which itera-
tively samples from the conditional probability Pr(z|φ, s1, . . . , sN )
and the conditional pdf p(φ|z, s1, . . . , sN ).

Let I(z) denote the set of values taken by the variables z1, . . . , zl.
Indeed, for the sake of presentation simplicity, we no longer as-
sume that the zi’s take all the values in a set {1, . . . , k}, but in-
stead some values spread among the integers. The reason for this
is that the Gibbs samplers may create and suppress locations φl’s,
thus incrementing the largest l while forming gaps in-between in-
dexes l. Thus, I(z) contains the values of l that are effectively used
at a given iteration. We denote N−i,l(z) =

PN

i′=1,i′ �=i δl,zi′ the
number of zi′ ’s (i′ �= i) which equal l. The likelihood is denoted
by f(s|φz) with f(s|φz) = N

`
s;mz,Kz

´
where the mean vec-

tor ismz = {mz(t1), . . . ,mz(tT )} and the covariance matrix is
Kz = {Kz(tj , tj′), (j, j

′) = 1, . . . , T}.
In Algorithm 1 below, the signals are rst assigned to some class,

then class parameter location are updated conditional on the related
signals. In practice, this sampling scheme is quite ef cient, and con-
vergence is reached quickly. The proposal density q(φ�|φ′l) may
be randomly selected as a Gaussian random walk, i.e. q(φ�|φ′l) =
N (φ�;φ′l,ΣRW) or as the prior distribution, i.e. q(φ�|φ′l) = G0(φ

�).
Further details about the algorithm may be found in [7].

Algorithm 1: Gibbs sampler for the DPMGP model
Step 1: Initialization

• For i = 1, . . . , N , sample eθ(0)i ∼ p(θi|θ1, . . . , θi−1) given

in Eq.(13) and deduce ez(0) and eφ(0)
.

Step 2: iterations. For n = 1, 2, . . ., do

% Step 2.1: Sample from Pr(z|eφ(n−1)
, s1, . . . , sN ) as fol-

lows

• Let z′ ← ez(n−1) and let φ′ ← eφ(n−1)

• For i = 1, . . . , N , update z′i by the following MH step

– Sample a candidate z�i from the Polya Urn proba-
bilities:

Q(z�i = l) =

8<:
N
−i,l(z)

α+N−1
for l ∈ I(z′)

α
α+N−1

for a new l /∈ I(z′)
0 for all other values of l

(23)

– if z�i ∈ I(z′), then compute r1 = f(si|φ′z�
i
)/f(si|φ

′
z′
i
);

otherwise, compute r1 = f(si|φ�)/f(si|φ′z′
i
)where

φ� ∼ G0. With probability min(1, r1), set z′i ← z�i
and φ′z′

i
← φ�.

– Let ez(n)i ← z′i

% Step 2.2: For l ∈ I(ez(n)), sample eφ(n)l from p(φl|si with
i such that ez(n)i = l), as follows

– Sample φ� ∼ q(φ�|φ′l)

– Compute

r2 =
q(φ′l|φ

�)

q(φ�|φ′l)

G0(φ
�)

G0(φ′l)

Y
i=1,...,N

such that ez
(n)
i

=l

f(si|φ
�)

f(si|φ′l)
(24)

and, with probability min(1, r2), set eφ(n)l ← φ(�);
otherwise, set eφ(n)l ← φ′l

4. DISCUSSION

The model presented in this paper has several practical advantages.
Firstly, it can be implemented on signals in one or more dimen-
sions without much algorithm changes. Second, the GP, together
with a given G0, enables the smoothness/roughness properties to be
discriminant or not. After assignment of a signal to a given class,
the GP enables signal interpolation with class-speci c parameters,
which may be more robust than GP regression with blindly selected
parameters. Also, the signals si to be classi ed do not need to have
been sampled at the same points ti,j (j = 1, . . . , Ti), with possibly
different lengths Ti’s. This latter property is of great interest in many
applications, where one collects irregularly sampled signals and tries
to class them into groups.

Aside Algorithm 1 above, we have implemented and tested the
retrospective sampling approach of [8]. This latter algorithm is more
complex and provides results similar to Algorithm 1. A common dif-
culty in Bayesian clustering is the so-called label-switching prob-

lem [9]: from one iteration of Algorithm 1 to another, the class labels
and parameter locations may change, and equivalent labellings may
be numerically different (because of shifts and permutations). This
requires the implementation of an additional layer to post-process
the MCMC samples. A solution to overcome this problem is to
embed the Gibbs sampler in Algorithm 1 into a simulated anneal-
ing procedure, or take one sample after convergence of the Markov
Chain (which is what we did in simulations).

Several previous works are related to this approach. The most
closely related is that of Shi et al. [5], which investigates regression
with a nite mixture of Gaussian Processes.

5. RESULTS

In this section, we rst propose results obtained with synthetic data.
Then, we provide results obtained from mRNA signals.

5.1. Synthetic signals

To demonstrate the effectiveness of the proposed approach, we have
produced a set comprising of 40 one-dimensional signals from four
different GPs (10 from each class) with zero-mean and covariance
function given in Eq.(22), where a0 = a1 = 0.
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Class tag 1 2 3 4
True a2 0.8 0.6 0.4 0.2
True b1 0.01 0.04 0.08 0.12
Estimated a2 0.97 0.79 0.396 0.19
Estimated b1 0.01 0.04 0.08 0.106

Table 1. Covariance function parameters used to generate the syn-
thetic data, and estimated class locations.

The priors over a2 and b1 are the inverse-gamma distributions
with parameters α = 0.65, β = 20, which provides support over the
realised values. This dataset has been processed with Algorithm 1
with α = 0.25, resulting in the following classi cation results. Six
classes have been identi ed with locations. Classes #1, #2 and
#3 contain 100% well classi ed signals, whereas class #4 con-
tains 80% of the signals simulated with its parameters. The two
remaining signals are assigned to individual classes with parameters
(a2 = 0.11, b1 = 0.10) and (a2 = 0.08, b1 = 0.07).

5.2. mRNA expression pro le signals

A problem of interest in systems- and cell-biology is that of identi-
fying cell-cycle regulated genes, which is still an open problem [10].
The problem amounts to identifying those genes which exhibit a pe-
riodic gene expression time-series. Traditional approaches to this
problem employ Fourier analysis, spline regression and other simi-
lar ideas. Here we propose to cluster the observed expression func-
tion using DPMGPs based on the covariance which incorporates a
periodic term to model the regulated genes, and an aperiodic term to
model the unregulated genes

K(t1, t2) = a2 exp
“
− b

2

Pd

q=1(t
q
1 − t

q
2)

2
”
+

a3 exp
“
− 1

2

Pd

q=1 sin 2πc(t
q
1 − t

q
2)

2
”
,

(25)

We extracted 200 mRNA expression pro les from the Saccharomyces
cerevisiae cdc28 arrest experiment [10], each comprising 17 time-
points. The algorithm was run with α = 0.25 for 2000 iterations,
b � 0.03 and an inverse gamma prior with parameters for a2, a3
and c : (10, 2), (4, 0.4) and (5, 07) respectively. Figure 1 illustrates
two representative clusters. Although performance is impossible to
quantify as no ground truth parameter values are available, the dis-
criminatory ability of the algorithm is apparent through the separa-
tion of the periodic from the aperiodic functions.

6. CONCLUSION

The original Bayesian unsupervised classi cation method presented
in this paper is shown to be ef cient in front of synthetic and real sig-
nals. Further investigations will consider larger classes of parametric
covariance functions, as well as image-related clustering problems.
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