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ABSTRACT

This paper presents an exhaustive study on the classi cation capa-
bilities of an ef cient algorithm, which is able to accurately classify
non-deterministic signals generated by chaotic dynamical systems,
without estimating their probability density function (pdf). Exper-
imental results were compared to other existing techniques such as
Hidden Markov Model (HMM), Vector Quantization (VQ), and Dy-
namic Time Warping (DTW). Classi cation performance is higher
than current best practices for chaotic signals. A better noise re-
jection was also achieved, and a reduction of two orders of mag-
nitude in training-times compared with HMM was obtained, thus
making the proposed methodology one of the current best practices
in this eld. As an application example, the recognition of encrypted
chaotic-signals in a secure-communication context, is reported and
discussed.

Index Terms— Signal classi cation, Karhunen-Loève Trans-
form, cryptography, chaotic signals, non-probabilistic algorithm.

1. INTRODUCTION

During recent decades, many classi ers based on several probabilis-
tic techniques such as, i.e. Hidden-Markov Model (HMM) [1],
Vector-Quantization (VQ), Dynamic Time Warping (DTW) have
been developed; a review of statistical recognition can be found
in [2]. However, it is possible to classify the state-of-the-art accord-
ing to the intrinsic limitations of the abovementioned practices: (i)
the high computational complexity of probability density function
(pdf) estimations (ii) the low-recognition performance in unsuper-
vised cases (iii) the large number of constraints on signal features,
and/or the assumptions on system properties and (iv) the high elabo-
ration times for training phases.

In this work an exhaustive study of the classi cation capabili-
ties of an our ef cient algorithm1 [4] is proposed. This algorithm
analyzes the proximity-measures between the trajectories and the
projections of a signal which has to be recognized, over all the
eigenfunctions calculated in the training phase. In fact, the decision
technology on which the recognition procedure is strongly based, is
achieved using a non-probabilistic methodology that takes into ac-
count both the principal and the minimal components. Moreover,
the recognition of chaotic signals is achieved without the probability
density function (pdf) estimation.

The analyzed stochastic processes (SPs) are dynamical sys-
tems based on non-linear maps that generate non-deterministic sig-

1A patent application of the proposed algorithm has been deposited [3] by
F. Gianfelici and C. Turchetti according to the copyright laws of the Italian
Government.

nals from several initial conditions and random parameters. Sev-
eral systems such as oscillating integrated circuits affected by ran-
dom device variations or secure communication systems using secret
keys, can be represented by these SPs. Exhaustive experimentation
showed high recognition performance with a limited number of sig-
nals used in the training phase. Several comparisons with HMM,
VQ, and DTW showed recognition performance that is higher for
chaotic signals. Moreover, a better noise rejection for several Sig-
nal Noise Ratios (SNR), and a reduction of two orders of magnitude
on HMM training-times have been achieved. As a case study, the
recognition of encrypted chaotic-signals applied to secure commu-
nications [5] was considered.

2. THE KLT-BASED ALGORITHM

Let us brie y recall the KLT-based algorithm that was recently pre-
sented in [4]. Given two distinct SPs, x and y with autocorrelation
matricesRxx andRyy respectively, the two bases {u1, . . . , uN} and
{w1, . . . , wN} are de ned in terms of the eigenvectors of the corre-
sponding eigenproblems2, namely RxxU = ΛU , RyyW = ΣW ,
where U = [u1, . . . , uN ] and W = [w1, . . . , wN ], with U, W ∈
R

L×N , andΛ,Σ are diagonal matrices containing the corresponding
eigenvalues. By projecting all the realizations x(i) and y(i) ∈ R

L,
i = 1, . . . , N onto the bases U and W , the vectors of KLT coef-
cients a(i) = UT x(i), b(i) = W T y(i) i = 1, . . . , N , and the
matrices A = [a(1) a(2) . . . a(N)] and B = [b(1) b(2) . . . b(N)],
with A and B ∈ R

N×N , are de ned. Similarly, by deriving the
cross-projections, i.e. the projections of each SP onto the base of
the other, we have e(i) = UT y(i) and f (i) = W T x(i). Thus
we can de ne the two matrices: E = [e(1) e(2) . . . e(N)], and
F = [f (1) f (2) . . . f (N)] with E, F ∈ R

N×N . By de n-
ing X = [x(1), . . . , x(N)] and Y = [y(1), . . . , y(N)] as the ma-
trices of realizations so that X , Y ∈ R

L×N , the projections and the
cross-projections can be rewritten in compact form as a collection of
N × N parameters, which can be represented in matrix form as:

PΦ =

[
PU

PW

]
=

[
A E

F B

]
(1)

where PΦ ∈ R
2N×2N is the non-symmetric matrix of extracted fea-

tures. Letting ζ be the realization that has to be recognized, the rst
step is the de nition of two vectors l = UT ζ andm = W T ζ, where
l and m ∈ R

N . As a second step let us de ne a transformation
T : R

N×K → R
N×2K acting on the columns of an N × K matrix

2The KLT is calculated by means of the Fast-KLT Algorithm that can be
found in [6].
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Table 1. Recognition with different training set dimensions (M =
2, TS = 100)

N x Rec. y Rec. Rec. Perf.
5 90% 86% 88%
10 54% 100% 77%
20 100% 98% 99%
30 100% 96% 98%
40 100% 100% 100%
50 100% 100% 100%

as:

T v =

⎡
⎢⎢⎢⎣

v1 v1

v1 v2

...
...

v1 vN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v(1)

v(2)

...
v(N)

⎤
⎥⎥⎥⎦ , (2)

where v = [v1 v2 · · · vN ]T is a generic column vector and
v(1), . . . , v(N) are elements of R

2. Applying T to l, m, PU , and
PW we obtain: T l, T m ∈ R

N×2, and T PU , T PW ∈ R
N×4N .

Thus we compute the matrices D ∈ R
N×2N and H ∈ R

N×2N

whose generic ik-th elements are [D]ik = dist
(
l(i), P

(k)
Ui

)
and

[H]ik = dist
(
m(i), P

(k)
Wi

)
with i = 1, . . . , N and k = 1, . . . , 2N ,

where dist is the Euclidean-distance between vector pairs. By de n-
ing another transformation S : R

N×2N → R
N×2N such that, when

applied to a matrixQ, results in a novel matrix Q̃ = SQ, with same
dimensions, whose elements are:

[Q̃]ik =

{
1, [Q]ik = minl[Q]il
0, elsewhere . (3)

In such a way the minimum distance in the rows of matrices D

and H is determined. Therefore we can de ne two vectors: c =
[c(1), c(2), . . . , c(2N)], and p = [p(1), p(2), . . . , p(2N)] whose ele-
ments are: c(k) =

∑N

i=1[D̃]ik and p(k) =
∑N

i=1[H̃]ik, where
D̃ = SD and H̃ = SH and c, p ∈ R

2N . The terms c(k), p(k)

can be rewritten as elements of a novel matrix Π ∈ R
2×2 as:

Π =

[ ∑N

k=1 c(k) ∑2N

k=N+1 c(k)∑N

k=1 p(k) ∑2N

k=N+1 p(k)

]
(4)

that can be summed by columns, thus obtaining following numbers:
μx = [Π]11 + [Π]21 and μy = [Π]12 + [Π]22, which represent the
likelihood-scores of ζ respect to x, and y. Finally the recognition of
ζ is performed as follows: ζ ∈ x if μx = max[μx, μy] or ζ ∈ y

if μy = max[μx, μy].

3. EXPERIMENTAL RESULTS ON CHAOTIC SIGNALS

In order to characterize the recognition performance and the noise
rejection of the recognizer, chaotic SPs that are characterized by bor-
der collision bifurcations (C-bifurcations) and/or eigenvalue bifur-
cations were taken into account. Methodologically, the experiments
were organized, according to the de nition of SPs, as follows: (i)
given a chaotic map, the realizations of each SP had random initial
conditions de ned in speci c closed intervals which had no intersec-
tion, and (ii) each SP was generated by one different chaotic-map.
Throughout this paper case (i) will be indicated as single-map based
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Fig. 1. Performance as a function of distance between intervals of
random initial conditions.
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Fig. 2. Performance as a function of training dimensions.

SPs and case (ii) as multi-map based SPs. In order to characterize
the single-map based SPs, let us to de ne the piecewise linear map:

f : x → f(x) =

⎧⎨
⎩

α1x + β1, if 0 ≤ x < γ

α2x + β2, if γ ≤ x < δ

α3x + β1, if δ ≤ x

(5)

where α1 = 1.4, α2 = −2, α3 = −0.8667, β1 = 0.1, β2 = 3.5,
γ = 1, and δ = 3. Two SPs, x and y, whose realizations have ran-
dom initial conditions in [0, 0.01], and [0.5, 0.51], respectively, were
considered. For this couple of SPs recognition performance with dif-
ferent training set dimensions varying from 5 to 50 is proposed in
Tab. 1. Figure 1 gives the recognition performance as a function of
the distance between intervals of random initial conditions. In or-
der to characterize the multi-map based SPs, several chaotic maps
were considered: a) the piecewise linear map described in single-
map based SPs, b) the well-known Lorenz map (logistic map), and
c) the Henon map. Their recognition performance as a function of
different dimensions of the training set is indicated in Fig. 2. It is
worth noting that for N ≥ 20 the Rec. Perf.> 95%, thus achieving
high reliability of recognition of chaotic signals. Several compar-
isons with current best practices such as HMM, DTW, and VQ were
considered. The results of the comparisons with HMM are shown in
Fig. 5, where it is possible to note the recognition performance as a
function of HMM states, its mean recognition value (90.9%), and the
performance of our approach (99.3%). This comparison hasM = 2
and N = 50, where x and y are generated by the normalized piece-
wise linear map with random initial conditions in [0, 0.01] and [0.5,
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Fig. 3. Noise rejection: comparison of recognition performance.

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

Training Dimension (N)

Ti
m

e 
[s

]

KLT based Recognizer
HMM

Fig. 4. Comparison between training times.

0.51], respectively. The comparison with DTW and VQ is shown
in Fig. 6. In order to characterize noise rejection, the role of super-
posed noise was investigated. The results forM = 2 and N = 50,
are shown in Fig. 3 where x and y are a normalized piecewise lin-
ear map with random initial conditions [0, 0.01] and [0.5, 0.51], and
HMM is modelled with 10 states and 2 mixtures. It is worth noting
that for chaotic signals with superposed noise, the KLT-based rec-
ognizer has a better noise-rejection than can be obtained using other
techniques. In Fig. 4 the training time of the KLT-based recognizer
and HMM respectively is shown for several training dimensions. It
is worth noting that the KLT-based recognizer is able to perform this
task with a reduction of two orders of magnitude compared with
HMM-times.

4. APPLICATION: SECURE COMMUNICATION SYSTEMS

Secure communication systems, able to prevent abusive or illegal in-
terceptions, are becoming more and more important in defence and
in civil communications. In this context, the pioneering idea of Tang
[7] on chaos synchronization applied to coherent demodulation, has
stimulated the development of many scienti c contributions during
the last two decades. A recent paper [5], has reported a large-scale
distributed application based on chaos synchronization. According
to the classi cation proposed in [8], cryptosystems can be divided
into: (i) chaotic switching, and (ii) chaotic modulation. A complete
review of chaos-based technology applied to secure communications
is in [9]. In this Section, an application to chaotic communications
of the recognizer based on chaotic switching is proposed. The com-
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Fig. 5. Comparison between HMM and KLT-based recognizer.
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Fig. 6. Comparison between DTW, VQ, and KLT-based recognizer.

plete schema of the communication system being analyzed is shown
in Fig. 7. In agreement with the well-known secure-communication
theory, the secret key is the chaotic-map de nition plus the random
initial conditions of zeros and ones, the transmitted chaotic signal is
the ciphered sequence of bits, and the receiver is represented by the
recognition algorithm, whose structure can also be public, e.g. the
RSA algorithm. Indeed the knowledge of the secret key allows us to
train the algorithm and to effectively recognize the ciphered signals
with the aim of reconstructing the original bit-sequences. Moreover,
the knowledge of the recognition algorithm alone, without additional
information on the secret key does not allow the calculus of training
data, and therefore the message recognition. Figure 8 shows (a) the
ciphered signal of the bit sequence 0101, where zeros and ones are
encoded by a piecewise linear map described in eq. (5), with random
initial conditions in [0, 0.01] and [0.5, 0.51], and (b) their spectra. In
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Fig. 7. Complete schema of the secure communication system.
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Table 2. Different measurement of bit recognition (M = 2, transmitted bits= 100)
Par. 1st Meas. 2nd Meas. 3rd Meas. 4th Meas. 5th Meas. Rec. Stat.
N 0’s 1’s Rec. 0’s 1’s Rec. 0’s 1’s Rec. 0’s 1’s Rec. 0’s 1’s Rec. Mean σ

10 49 45 94% 30 43 73% 47 49 96% 35 50 85% 49 49 98% 89.2% 10.33
20 49 47 96% 48 50 98% 50 50 100% 49 50 99% 49 49 98% 98.2% 1.48
30 49 49 98% 50 50 100% 50 50 100% 49 50 99% 50 50 100% 99.4% 0.89
40 50 50 100% 50 50 100% 50 50 100% 50 50 100% 50 50 100% 100.0% 0.00
50 50 50 100% 50 50 100% 50 50 100% 50 49 99% 50 49 99% 99.6% 0.55
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Fig. 8. Ciphered signal of the bit-sequence 0101 and their spectra.

order to validate the reliability of the receiver, several measurements
are proposed in Tab. 2, which clearly shows a reduction in standard
deviation σ with an increase in performance. Moreover, several ma-
licious attacks on recognition procedure (assuming that the recogni-
tion algorithm is public, e.g. RSA) were considered. Figure 9 gives
the recognition performance as a function of the exactness of the es-
timated training-set N = 50, conjecturing that the opponent is able
to extract from the transmitted signal, the abovementioned percent-
age of realizations (with exact length) to train the recognizer. Where
the exactness is represented as a percentage of realizations that are
correctly generated by a speci c SP, the inexact signals are gener-
ated by another SP, and the Testing Set has an exact time-support L.

5. CONCLUSIONS

In this paper, a novel KLT-based methodology for the ef cient recog-
nition of chaotic signals has been proposed. The results show a
recognition rate which is close to 100%, thus demonstrating the va-
lidity of the proposed algorithm. A comparative evaluation with
state-of-the-art techniques demonstrated the superiority of the pro-
posed approach and a reduction of two orders of magnitude in train-
ing times.
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Fig. 9. Malicious attack.
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