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ABSTRACT

In any classi cation task the confusion error, in general, is propor-
tional to the number of classes. This is mainly due to sharing of
some common attributes (feature vectors) among different classes.
This, in many cases, leads to a serious problem, in the sense that, the
classi er itself may be biased towards a speci c class or a subset of
classes. An ideal classi er is not expected to have any such bias. If
we assume that, for a given pair of models and their corresponding
training data, the log-likelihoods are distributed normally, the bias of
any of these models may be visualized in the likelihood-space as an
overlap between Gaussian likelihoods of different models (classes).
In this paper, we propose a discriminant measure, using a product of
Gaussian likelihoods, to estimate the amount of bias. By adjusting
the complexity of the models, we show that this bias can be neutral-
ized and a better classi cation accuracy can be achieved. Presently,
the experiments are carried out on the OGI MLTS telephone speech
corpus on a language identi cation task. The results show that a bet-
ter classi cation accuracy can be achieved without any degradation
in the performance of any of the individual classes.

Index terms: Pattern classi cation, Gaussian distribution, Bias.

1. INTRODUCTION

Gaussian mixture modeling (GMM) and hidden Markov modeling
(HMM) based techniques have been successfully used in many clas-
si cation tasks. Using maximum likelihood estimation, the model
parameters can be ef ciently estimated by maximizing the likeli-
hoods of the training data of a speci c class. However, the major
weakness of such techniques is that the models are trained in iso-
lation, in the sense that information about other classes in a given
task is not considered. Further, the complexities of the models of all
the classes are assumed to be same, especially when the amount of
training data for all the classes is the same [1]. This may lead to a
sub-optimal set of models especially when dealing with extremely
confusing classes, which results in increased classi cation error.

With a given set of classes, and an appropriate feature, the main
goal in designing any classi er is to achieve minimum classi cation
error. For a given feature, when two classes are similar in many
senses, i.e, if they share many attributes, the classi cation error be-
tween these two may not be reduced. In such cases, at least the mis-
classi cation should be symmetrical, i.e., both the classes confuse
equally with each other. The worser case is that, in many situations,

one of these classes may be biased severely. In a two-class prob-
lem, achieving 50% accuracy for both the classes is much better than
acheiving 100% accuracy for one class and 0% for the other, even
though the overall performance in both the cases are the same. In
other words, the classi cation accuracy for the all the classes should
be more or less the same.

In the place of the MLE method for the estimation of model pa-
rameters, researchers have tried MMIE-based methods by consider-
ing the rest of the models [2] or a sub-set of the most confusing mod-
els [3] [4]. Instead of modifying the parameter-estimation method,
an interesting method is presented in [5], in which the data points
which do not t the models well, in other words, the outliers, are re-
moved or de-emphasized. The authors of [5] have proposed another
technique, in which the decision boundary, in the likelihood space,
between a HMM pair is adjusted to reduce the bias in any of the
models [6].

In this paper, we propose a method that is similar to the tech-
nique presented in [6], in the sense that the bias removal is carried
out in the likelihood space. However, instead of modifying the de-
cision boundary, we adjust the log-likelihoods, by modifying the
topology of the corresponding model in such a way that the bias be-
tween a pair of HMMs is reduced. If we assume that, for a given pair
of models and their corresponding training data, the log-likelihoods
are distributed normally1, the bias of any of these models may be
visualized in the likelihood-space as an overlap between Gaussian
likelihoods of different models (classes). If a feature distribution is
assumed to be a univariate Gaussian, the likelihood distribution may
be considered as exponential. However, for n-dimensional features,
if the feature distribution is a mixture of Gaussians, the resultant like-
lihood distribution cannot be easily predicted. Based on the empir-
ical observations (especially when the number of training examples
is very high) and for analysis, it is presently assumed as Gaussian
distribution.

Previously, we have de ned a quantitative measure for the amount
of overlap between two Gaussians [7]. In [7], this measure is used,
in a continuous speech recognition system, to optimize the topology
of the syllable models by considering whether a given model can

1If a feature distribution is assumed to be a univariate Gaussian, the
likelihood distribution may be considered as exponential. However, for n-
dimensional features, if the feature distribution is a mixture of Gaussians,
the resultant likelihood distribution cannot be easily predicted. Based on the
empirical observations (especially when the number of training examples is
very high) and for analysis, it is presently assumed as Gaussian distribution.
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discriminate training data of confusing classes from its own. The
same measure is used in this work to estimate the amount of bias in
a model and to remove it. In the present study, we apply the proposed
technique on a language identi cation task and compare its perfor-
mance with that of the conventional GMM-based classi er [1]. We
show that the classi cation accuracy can be increased considerably
by reducing the bias.

The outline of this paper is as follows. In the next section, we
de ne the bias in any model and a quantitative measure to estimate
the bias. The step-by-step procedure used for the bias removal is
presented in section 3. The experimental setup and the performance
on a language identi cation task is presented in section 4. Finally,
other possible methods to reduce the bias and future directions are
discussed in section 5.

2. BIAS ESTIMATION

As mentioned earlier, when two different classes share some at-
tributes in common, the confusion error cannot be avoided. In such
cases, the confusion between the two classes is either (a) symmetri-
cal, in the sense that both the classes are confused with each other
equally or (b) asymmetrical, i.e., one of the classes is biased. In the
present work, we concentrate on handling the second case, where
one class is dominated by the other. In regression and classi cation
problems, for a speci c class, the bias is generally de ned in terms
of the error rate [8] [9]. When the models are trained with a reason-
able number of parameters (components) the error rate, especially
on training data, does not provide the required information about the
bias.

Let us consider the feature vectors of two different classes (Ci

and Cj) as xi
k and xj

k. Let λi and λj be the models of the classes,
Ci and Cj , respectively. Let the likelihoods of the feature vectors
of the class Ci for the given models λi and λj be p(xi

k|λi) and
p(xi

k|λj) respectively. We can assume that these likelihoods are dis-
tributed normally in likelihood space with suitable parameters. Let
these two Gaussians be Nii(μii, σ

2

ii) and Nji(μji, σ
2

ji). Similarly,
for the feature vectors of the class Cj , the likelihood-Gaussians are
Njj(μii, σ

2

jj) and Nij(μji, σ
2

ij). Under ideal conditions, the classi-
cation error can be related to the separation between the two Gaus-
sian likelihoods shown in gure 1 (a) and (b). If the overlap between
the two Gaussians Nii and Nji, is equal to the overlap betweenNjj

and Nij , then there exists no bias.
Earlier, we have proposed a measure to quantify the amount of

overlap between two Gaussians [7]. The same measure is used here
also, however, in a different context. The details are given below,
with required changes, for clarity purposes. Let Nii(μii, σ

2

ii) and
Nij(μij , σ

2

ij) be

Nii = f [(p(xi
k|λi)] =

1√
2πσii

e
− (p(xi

k|λi)− μii)
2

2σ2

ii , (1)

Nji = f [(p(xi
k|λj)] =

1√
2πσji

e
− (p(xi

k|λj)− μji)
2

2σ2

ji . (2)
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Fig. 1. An illustration of bias of a model (λi) (a) The likelihood
distributions (Nii and Nji) of the utterances of the classes Ci for
the given models λi and λj . (b) The likelihood distributions (Njj

and Nij ) of the utterances of the classes Cj for the given models λj

and λi.

LetNk(μk, σ2

k) be2

Nk(μk, σ2

k) = Nii(μii, σ
2

ii) . Nij(μji, σ
2

ji). (3)

For the product of the Gaussians, the mean (μk) and its variance (σ2

k)
can be given as

μk =
σ2

ijμii + σ2

iiμji

σ2

ii + σ2

ji

, (4)

σ2

k =
σ2

iiσ
2

ji

σ2

ii + σ2

ji

. (5)

In order to quantify the amount of overlap between two different
Gaussians, we de ne the following ratio (Oij ).

Oij =
max[Nii(μii, σ

2

ii) . Nji(μji, σ
2

ji)]

max[Nii(μii, σ2

ii) . Nii(μii, σ2

ii)]

=
Nr

Dr
. (6)

In Equation (6),

Nr =
1

2πσiiσji

e
−

»
(μk − μii)

2

2σ2

ii

+
(μk − μji)

2

2σ2

ji

–
(7)

and Dr =
1

2πσ2

ii

. (8)

From Equations (7) and (8), Equation (6) can be written as

Oij =
σii

σji

e
−

»
(μk − μii)

2

2σ2

ii

+
(μk − μji)

2

2σ2

ji

–
. (9)

If μii = μji, then Equation (6) reduces to

Oij =
σii

σji

. (10)

2In the present study, Nk is not normalized, as this will not affect its use
in Equation (11).
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However, for this case we expect the overlap Oij to be equal to 1.
To achieve this, Equation (6) is further normalized as given below:

ON
ij = Oij

σji

σii

= e
−

»
(μk − μii)

2

2σ2

ii

+
(μk − μji)

2

2σ2

ji

–
. (11)

The resultant ON
ij is used as a measure to estimate the amount of

overlap between two Gaussians.
Using this de nition for the amount of overlap, the bias (B) can

be de ned as
B = ON

ij −ON
ji . (12)

If B is positive, the model λi is considered as “negatively-biased”;
else λi is considered as “positively-biased”. For each pair of classes,
the estimated bias, B, is removed as explained in the next section.

3. BIAS REMOVAL

Let us consider N different classes, C1, C2, ..., CN . Let λm
i be the

acoustic models of the class Ci, wherem is the number of mixtures
per state, that varies from 1, 2, ..., M . For each class,M models with
varying numbers of mixtures are pre-generated. For the N classes,
the number of possible pairs isN(N − 1)/2. For each pair, the bias
is estimated and corrected as given below.
1. For each pair (Ci, Cj ), compute the overlaps ON

ij and ON
ji

(models withM mixtures), using their corresponding training
data.

2. Decide the category of the bias (positive or negative) in each
of the models.

3. Reduce the number of mixtures of the positively-biased model
by 1 (m = m − 1). In fact, this can be accomplished by in-
creasing number of mixtures of the negatively-biased model3.
Increasing the number of mixtures, in other words splitting
the mixtures, leads to lower variances and increased likeli-
hoods for the training data. Decreasing the number of mix-
tures does the reverse. In fact, if we change the number of
mixtures of one model, the in uence can be seen in all the
four Gaussians shown in gure 1.

4. Calculate the new bias as given in equation 12.
5. If there is a sign change in bias or if it is zero, terminate the
process, and consider the corresponding number of mixtures
for the positively-biased model.

6. Repeat the steps 3-5, otherwise.
In this procedure, in a pair, only one model is modi ed (speci cally
a positively-biased model) to remove the bias. However, it can be
corrected by modifying (increasing/decreasing the number of mix-
tures of the negatively/positively-biased models) both the models’
complexity simultaneously.

In the current study, this bias-removal technique is used for a
language identi cation task as described in the next section. How-
ever, with minor changes, the same technique can be used for any
classi cation task that is based on GMM or HMM.

3As mentioned here, the bias can be removed also by increasing the com-
plexity of the negatively-biased model. However, there exists a problem that
the resultant model may be over-trained.

4. LANGUAGE IDENTIFICATION TASK

In the spoken language identi cation task, it should be assumed that
no test speaker’s spectral (or any other type of) information is present
in the training set. In that, the comparison between the test utterance
and the reference models of the languages is from unconstrained ut-
terances of two different speakers.

The Oregon Graduate InstituteMulti-language Telephone Speech
(OGI MLTS) Corpus [10], which is designed speci cally for LID re-
search, is used for both training and testing. This corpus currently
consists of spontaneous utterances in 11 languages: English (En),
Farsi (Fa), French (Fr), German (Ge), Hindi (Hi), Japanese (Ja),
Korean (Ko), Mandarin (Ma), Spanish (Sp), Tamil (Ta) and Viet-
namese(Vi). The utterances were produced by ∼90 males and ∼40
females, in each language over real telephone lines. In our work,
presently all 11 languages are used. To maintain the homogeneity
in training and testing across languages, for each language the rst
30 male speakers’ 45 s utterances are used for training and the rest
of the male speakers’ 45 s utterances are used for testing. The total
number of test utterances is 581.

The models are trained and tested using HTK. Cepstral mean
subtracted MFCC (13 static + 13 dynamic + 13 acceleration) is used
as a feature for this task. Instead of GMM, single-state HMMs with
varying number of mixtures (16 to 64, in steps of 1) are trained for
all the languages. For each of the pairs, the bias is estimated and
removed as explained in the previous section. Here, removing the
bias from one model, in a pair, may affect the other classes undesir-
ably. To avoid this, for this language identi cation task, we adopt a
two-level identi cation as given below.

The proposed technique for bias estimation and correction, in its
present form, can be used for pair-wise testing only. However, we
have extended this technique for 11 language testing by performing
identi cation in two levels. In the rst-level identi cation, conven-
tional testing is performed using a xed number of mixtures (here,
64) for all the classes (refer to the third column of Table 1). The 2-
best output of this level is considered as the pair for the second-level,
in which the bias removed models are used (refer to fourth column
of Table 1).

We have compared the performance of the proposed technique
with that of a conventional GMM-based classi cation system, where
same complexity is used for all the models (classes) invariably. From
the comparison on the performances (refer to Table 1), the following
observations can be made.

• The overall performance of the language identi cation system
is improved by 4.2% over the baseline system’s performance.

• The performances of the weaker classes are considerably in-
creased (e.g., Japanese).

• Interestingly, the bias-removal technique does not reduce the
performance of any of the languages. (Only a minor reduction
is observed for English).

• We observe a 2% reduction in standard deviation (refer to last
row of the Table 1) also.

Recent developments in language identi cation tasks show a very
low classi cation error-rate. Our intention, here, is to show that the
performance of a GMM/HMM-based system can be improved by
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Table 1. Language identi cation performance of the systems before
and after bias removal (BR)

Language No. of tests Performance in %
Before BR After BR

En 99 71.7 70.7
Fa 50 56.0 56.0
Fr 49 67.3 71.4
Ge 29 48.3 55.2
Hi 131 51.9 54.9
Ja 23 30.4 47.8
Ko 33 51.5 54.5
Ma 32 62.5 62.5
Sp 43 51.2 53.5
Ta 59 50.8 52.5
Vi 33 42.4 51.5

Average 53.1 57.3
std 11.4 9.4

the proposed logic. Since the numbers of female speakers for many
of the languages are very small, we have considered only the male
speakers’ data.

5. DISCUSSION

As mentioned in the introductory part of this paper, the de ned-bias
can be removed in multiple ways. In the present study, we have
adjusted only the complexity of the biased model to remove the bias.
The common attributes between classes, either the common feature
vectors or at least the common examples (here, a speaker of one class
may fully resemble another class), can be removed or de-emphasized
to remove bias.

In the present study, by performing identi cation tasks in two-
levels, the technique is extended to a multi-class problem. However,
when the numbers of classes are very high, the training process may
be expensive. In such cases, for each class, instead of considering all
the other classes as competing classes, we can consider only the most
confusing class(es) alone. If we assume that for each class there is
only one competing class, which in many cases is correct, we can
perform classi cation in a single-level itself.

An interesting point to note here is, the bias is made close-to-
zero by keeping the complexity of one system xed and modifying
the other, which makes the problem simpler. If we decide to mod-
ify both the models, we may get different points where the bias is
close-to-zero. In such a situation, we have to make sure that the
absolute overlaps, ON

ij and ON
ji , between the Gaussians are also re-

duced. Bias removed models will ensure reduced variance in the per-
formance. However, reduced overlaps between the Gaussians will
ensure a better overall performance. An ideal classi er can be real-
ized if both the conditions are satis ed.

6. CONCLUSION

In this paper, we proposed a new technique to estimate and remove
bias, if any, in a classi er to improve the classi cation accuracy of a
system. Assuming that the acoustic likelihoods are distributed nor-
mally, the bias is estimated in the likelihood-space. The bias term
is de ned in terms of a product of likelihood-Gaussians. We sug-
gested various methods to remove this bias, and shown that it can be
accomplished by modifying the complexity of a model itself. Fur-
ther, through our experiments on a language identi cation task, we
have shown that the performance of weaker classes can be improved
without any signi cant degradation in the performance of the other
classes. Since the proposed bias-removal method is based on likeli-
hoods, it can be utilized in any of the GMM/HMM-based classi ers.
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