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ABSTRACT

In most machine learning and pattern recognition problems,
the large number of high-dimensional sensory data, such as
images and videos, are often labeled manually for training
classifiers and modeling features, which is time-consuming
and tedious. To automatically execute this process by ma-
chine, we present the unsupervised high-dimensional data clus-
tering and automatic labeling algorithms, called Locally Em-
bedded Clustering (LEC): (i) Constructing the neighborhood
weighted graph with an appropriate distance metric; (ii) Tun-
ing the regularization parameter to smooth the approximated
manifold; (iii) Calculating the unified projection in a closed-
form solution for the embedding and dimensionality reduc-
tion; (iv) Choosing the top or bottom coordinates of the em-
bedded low-dimensional space for data representation; (v)
Normalizing the low-dimensional representation to have unit
length; (vi) Clustering and labeling the data via K-means. Ex-
perimental results demonstrate that LEC provides better data
representation, more efficient dimensionality reduction and
better clustering performance than many existing methods.

Index Terms— LEA, LEC, manifold, high-dimensional
data clustering, dimensionality reduction.

1. INTRODUCTION

The clustering and dimensionality reduction in supervised or
unsupervised manner have been the focus of considerable is-
sues in computer vision and pattern recognition. Usually, the
large number of sensory inputs, such as images and videos,
are often viewed as high-dimensional vectors with large per-
cent of dimensionality redundancy. The basic information
processing task is to label the high-dimensional raw data man-
ually, which is very tedious and time-consuming. In order to
understand and learning the multivariate data with automatic
machine processing, we need to reduce the dimensionality
and find more compact representations for unsupervised high-
dimensional data clustering. Conceptually, if the variance of
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the multivariate data is faithfully represented as a set of pa-
rameters, the data can be considered as a set of geometrically
related points lying on a smooth low-dimensional manifold.
An interesting issue, which will be investigated in the paper,
is how to cluster the high-dimensional multivariate data auto-
matically with a suitable dimensionality reduction technique.

The fundamental issue in dimensionality reduction is how
to model the geometry structure of the manifold and pro-
duce a faithful embedding for data projection. The existing
nonlinear methods such as LLE[10], Laplacian Eigenmaps
(LE)[1], Isomap[12] and SDE[13], focus on preserving the
geodesic distances which reflect the real geometry of the low-
dimensional manifold. They have been successfully applied
to some standard data sets and generate satisfying results in
dimensionality reduction and manifold visualization. How-
ever, most nonlinear methods only provide the mapping from
input to manifold, instead of a reversible mapping from man-
ifold space to original space. Some papers have demonstrated
that the nonlinear methods can be associated with particular
linearization formulations, e.g. KPCA⇔PCA [8], ISOMAP
⇔MDS, LE⇔LPP [4] and LLE⇔LEA [3] (NPE [5]). A gen-
eral framework, Graph Embedding(GE)[14], reveals the es-
sential objective characteristic shared by these methods.

Another technique related to this topic is the Spectral Clus-
tering (SC) [2, 9, 15], which uses the top or bottom eigenvec-
tors of a normalized affinity matrix for K-means clustering[18].
These methods start with well-motivated objective functions,
optimization eventually leading to eigenvectors, with many
clear and interesting algebraic properties. Better than tradi-
tional clustering methods, SC algorithms do not need to learn
an explicit model of data distribution, in which EM is used to
learn the mixture density. However, most existing SC algo-
rithms only focus on the detailed theoretical analysis for low-
dimensional synthetic data clustering, instead of the high-
dimensional real data, which cause more complicated and dif-
ficult problems because of the “curse of dimensionality”. To
handle the dimensionality reduction in SC, we suggest using
GE as the preprocessing part of the clustering algorithms.

We are interested in exploiting the Locally Embedded Clus-
tering (LEC) technique for the real-world scenario: automatic
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high-dimensional data labeling. Our idea essentially inte-
grates the SC technique with the LEA dimensionality reduc-
tion approach in an unsupervised learning manner.

2. LOCALLY EMBEDDED ANALYSIS

Locally Embedded Analysis (LEA) [3] is the linearization
form of LLE. The basic idea is to represent each vertex of
a neighborhood graph as a certain measurement value, which
reveals the essential manifold structure of the original data,
by preserving the similarities of vertex pairs obtained from
the graph similarity matrix. Define a one-to-one mapping be-
tween X = {x1,x2, · · · ,xn} and Y = {y1,y2, · · · ,yn}.
Suppose G = {X,W} is a weighted graph with similarity
matrix W ∈ R

n×n and Laplacian matrix L = D − W,
where Dii =

∑
Wij , ∀i �= j. Then we find the graph em-

bedding of graph G and the low-dimensional representation
through y∗ = argminyTLy (1-D case), with the constraint
yTBy = q, where q is a constant. The space projection of lin-
earization is defined by a transformation P : RD → R

d. The
D × d projection matrix is denoted by P = [p1 p2 · · · pd]
which satisfies yi = PTxi. The D-to-d projection can be
written as a single matrix equation Y = PTX where xi and
yi are respectively viewed as columns ofD×nmatrixX and
d × n matrix Y. When d = 1, the original D-dimensional
data set is projected onto a line. We obtain the D-to-1 pro-
jection y = pTX. The vector p = [p1 p2 · · · pn]

T is the
line to project, and y = [y1 y2 · · · yn]

T is the vector of
the coordinates, where yi = pTxi. Subject to the constraint
pTXBXTp = q or pTp = q, we finally get the objective
function p∗ = argminpTXLXTp in matrix form.

3. LOCALLY EMBEDDED CLUSTERING

We present the LEC algorithms associated with two different
embedding cases, subject to different constraints in formula-
tions. In the supervised embedding, assuming that the de-
sired low-dimensional degree d to project is known, the prob-
lem of embedding is to calculate the mapping from the D-
dimensional space to the d-dimensional subspace. In the un-
supervised embedding, assuming that the desired low- dimen-
sional degree d to project is unknown, we formulate the em-
bedding problem as a D-to-1 projection, that is, the mapping
fromD-dimensional space to each axis of the low-dimensional
space is optimal. In geometrical sense, the high-dimensional
data are linearly projected onto an optimal line preserving the
underlying neighborhood structure.

Suppose a high-dimensional data set with n elements is
denoted by X = {x1,x2, · · · ,xn}, where xi ∈ R

D and
i = 1, 2, · · · , n, which is prone to cluster into c subsets. De-
note X (i)

N = {x
(i)
N(1),x

(i)
N(2), · · · ,x

(i)
N(k)} as the set of xi’s k

nearest neighbors, where x(i)
N(j) ∈ R

D and j = 1, 2, · · · , k.
We summarize the two LEC algorithms as follows:

LEC Algorithm 1:
1. Form the local Gram matrixGi ∈ Rk×k for xi.

• Gi[j, l] = (xi − x(i)N(j))
T (xi − x(i)N(l)).

• Gi = (xi1T −X(i))T (xi1T −X(i)), where the k-by-1
column vector 1 consists of ones and the columns of the
D-by-k matrixX(i) contains xi’s k nearest neighbors.

2. Tuning the regularization parameter r.

• G−1
i = (Gi + (r · ∑k

j=1 λ
(j)
G ) · I)−1, where λ

(j)
G is the

eigenvalue of matrixGi.

3. Construct the similarity matrixW ∈ Rn×n.

• W[i,N(j)] = wi(j) = w
(i)
j , and the other elements of

W are 0.

• wi =
G

−1

i
1

1TG−1

i
1
andwi = [w

(i)
1 w

(i)
2 · · · w

(i)
k ]T .

4. Solve for D-to-d embeddingY = PT
X, andY ∈ Rd×n.

• Solve the eigenvalue problem X(I − W)T (I −
W)XT

P = ΛXXT
P, where Λ is the diagonal Lagrange

multiplier matrix.

• The columns of P are the smallest d eigenvectors of ma-
trix (XXT )−1

X(I −W)T (I −W)XT after discarding
the bottom eigenvector (the mean of PT

X).

5. Normalize each column of Y to form Z ∈ Rc×n.

• Z[i, j] = Y[i,j]√∑
i
Y[i,j]2

.

6. Treat each column of Z as a point in Rc and cluster via
K-means.
7. Assign the original point xi to cluster c if and only if zi is
assigned to cluster c.

LEC Algorithm 2:
1. 2. 3. are exactly the same as LEC Algorithm 1.
4. Solve for D-to-1 embedding y = pTX for y ∈ Rn.

• Form the diagonal matrix D ∈ R
n×n, where D[i, i] =∑n

j=1W[i, j].

• Obtain the projection vector p by solving the eigenvalue
problem X

(
D −W

)T (
D −W

)
XTp = λX

(
DTD +

WTW
)
XTp.

• The vector p is the second smallest eigenvector of(
X
(
DTD+WTW

)
XT

)
−1
X
(
D−W

)T (
D−W

)
XT .

5. Treat each component of y as a point in R and cluster via
K-means.
6. Assign the original point xi to cluster c if and only if yi is
assigned to cluster c.

Recall that each diagonal value D[i, i] of matrix D cor-
responds to the weights summation for the k nearest neigh-
bors of a particular data point. Moreover, since the non-
symmetric rows and columns of sparse matrixW have very
few overlaps, it follows thatWTW is almost a diagonal ma-
trix. Therefore, the matrixDTD+WTW indicates the local
distribution around yi because a large value in the diagonal
means a short distance between neighbors. Hence, we choose
the constraint pTX

(
DTD+WTW

)
XTp = 1 in LEC-2.
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4. COMMENTS ON LEC ALGORITHMS

First, theoretically, LEC-1 algorithm is a particular case of

LEC-2 algorithm. Matrices X
(
D −W

)T (
D −W

)
XT and

X
(
DTD +WTW

)
XT are both positive semidefinite and

symmetric. Subject to the constraint
∑k

j=1 w
(i)
j = 1 and

D = I, the equation in step 4 of LEC-2 can be rewritten as

X
(
I−W

)T (
I−W

)
XTp = λX

(
I+WTW

)
XTp, which

is similar to step 4 of LEC-1 whenWTW ≈ I and d = 1.
Secondly, since LEC algorithms focus on revealing the

approximate local structure, the display of the manifold is of-
ten very rough. One efficient way to improve the clustering
accuracy is to smooth the manifold, which can actually get
rid of the boundary errors between different clusters. In order
to smooth the approximated manifold, we introduce a regu-
larization parameter r [11] in step 2 of both LEC algorithms,
that isG−1

i = (Gi + (r ·
∑k

j=1 λ
(j)
G ) · I)

−1. The r is usually
chosen in the range of [0, 1] in the case of LEC clustering.

Thirdly, in some cases, especially when the original data
are normalized in the preprocessing, we should be very care-
ful in choosing the bottom eigenvectors for low-dimensional
representation. In the presented LEC-1 and LEC-2 algorithms,
we throw away the smallest eigenvector. Since the parame-
ter r play an important role in the clustering, sometimes the
smallest eigenvector is still useful, especially the LEC-2 al-
gorithm. It is reasonable to check the bottom eigenvector in
some particular high-dimensional data clustering cases.

Finally, the LEC algorithms are very general, which can
be extended to the linearization type of any particular graph
embedding methods. We can also generalize the LEC algo-
rithms using different type of distance metric for neighbor-
hood measurement. For example, the distance between neigh-
bors in high-dimensional space can be measured with cosine
angles, that ism = exp(−‖xi‖

T · |xj‖/σ
2).

To evaluate the performance of LEC, we compare the pro-
posed LEC-2 algorithms with 4 following listed state-of-the-
art methods:
1. K-means: Apply K-means clustering on the original high-
dimensional data;
2. PCA+K-means: Apply K-means clustering on the low-
dimensional PCA representation of the original data after
re-normalization;
3. K-Whitening+K-means[16]: First project the original data
into the kernel space using a Kernel Whitening transformation.
Then apply K-means clustering on the low-dimensional Kernel
space representation of the original data after centering the
kernel matrices;
4. Ng-Jordan-Weiss (NJW)[15]: First, form the affinity matrix.
Secondly, construct the normalized affinity matrix. Thirdly, find
the desired number of largest eigenvectors of the normalized
affinity matrix. Fourthly, normalize each trimmed eigenvector
to have unit length. Fifthly, treat each normalized vector as a
low-dimensional representation of original data point. Finally,
cluster and label the original data via K-means.

Fig. 1. Clustering results of Frey’s face images via 5 different meth-
ods. The top row shows the error distribution. The bottom row shows
the clustering affinity matrix. (a) K-means. (b) PCA (top 10) + K-
means. (c) K-Whitening + K-means. (d) Ng-Jordan-Weiss (NJW).
(e) LEC-2. (f) The 87 images of LEC-2 clustering errors.

The LEC algorithms inherit the basic properties of GE
and SC techniques. The essential new feature of LEC is the
joint property for dimensionality reduction and unsupervised
clustering. Unlike the NJW algorithm, LEC has the proper-
ties of dimensionality reduction and manifold analysis, which
is the important advantage of LEC for high-dimensional data
clustering. Moreover, LEC has clear objective functions with
closed-form solutions. Unlike GE, LEC aims at data cluster-
ing other than a pure dimensionality reduction.

5. EXPERIMENTS

We demonstrate the properties of LEC using Frey faces [10]
and AAI database [19]. The Frey faces contain 1965 gray-
scale face images taken from a video. The images, in a reso-
lution of 28×20, show variations in face expression and view
rotations. The images are cropped to the resolution of 24×14
with a rectangular mask. We manually assign each 1965 im-
age with one of the four labels: happy, neutral, unhappy1 or
unhappy2. The unhappy1 subset contains most normal sad
images, while the unhappy2 contains some unexplained un-
happy images. The original data set is finally partitioned
into 4 subsets [Happy, Neutral, Unhappy1, Unhappy2], which
contain 618, 587, 634 and 126 images respectively. We use an
automatic 3D PBVD tracker to localize and crop the subject’s
face in the AAI video sequence, which generates 25 frames
of facial texture map per video second. We obtained 5230
frames (1372 happy, 851 unhappy, 3007 neutral, labeled by
a psychologist) for the male subject. The facial texture maps
are normalized and re-scaled to the images in the resolution
of 30× 26 with 256 grey levels per pixel. We sample 200 key
frames from each of the 3 subsets respectively.

The top 3 sub sets of totally 1893 Frey’s face images are
chosen to test the LEC performance and compare the results
with other 4 reference methods. Figure 1 shows the clustering
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Table 1. Clustering results on Frey’s face images.

Method Parameter Dim. � Error Rate (%)
(r, σ2) (T., B.) (� / 1839)

K-means None 336 15.72 (289/1839)
PCA10+K-means None 10 (T) 13.32 (245/1839)
PCA1+K-means None 1 (T) 15.39 (283/1839)
K-W+K-means σ2

= 0.5 10 (T) 9.84 (181/1839)
NJW σ2

= 0.15 3 (T) 7.34 (135/1839)
LEC-2 r = 0.6 1 (B) 4.73 (87/1839)

results of 5 different methods: (a) K-means, (b) PCA (top 10)
+ K-means, (c) K-Whitening + K-means, (d) NJW, and (e)
LEC-2. The top row shows the error distribution. Each verti-
cal red bar represents a clustering error for the particular im-
age. More red bars displays more errors in the clustering. The
bottom row shows the clustering affinity matrix, which repre-
sents the distance between each data point pairs in color rang-
ing from blue to red, and passing through the cyan, yellow,
and orange. The red color represents small distance value,
while the blue color represents large distance value. More
distinct blocks in affinity matrix, such as (e), displays better
clustering results. The distribution of red bars and the affinity
matrix, especially in (d)(e), reveal that the neutral faces and
unhappy faces are hard to separate. Table 1 shows more quan-
titative results on this experiment. Set the cluster numbers as
3 and replicates as 50 for K-means clustering. The bottom 3
values are obviously better than the top 3 values. The LEC-
2 outperforms all the other 5 methods with lowest error rate
(4.73%) and degree (only 1) of dimensionality reduction. The
87 images of LEC-2 clustering errors are shown in (f). We ob-
serve that many of these error images contain large variations,
such as pose rotation, blinking, grimace and transition expres-
sions. It is even hard for human to recognize and categorize
their emotional types, which can be considered as outliers.

Table 2 shows the clustering results of AAI male face im-
ages via 6 different methods: K-means, PCA (top 1) + K-
means, PCA (top 100) + K-means, K-Whitening + K-means,
NJW, and LEC-2. Set the cluster numbers as 3 and replicates
as 50 for K-means clustering. The bottom 3 values are still
better than the top 3 values. The LEC-2 still outperforms all
the other 5 methods with lowest error rate (20.67%) and de-
gree (only 1) of dimensionality reduction.

6. CONCLUSIONS

The LEC algorithms are demonstrated to be more applica-
ble for high-dimensional data clustering than many existing
methods. Their key advantage is the generalization ability,
since the GE type can be changed to any suitable embedding
cases [14, 17], and the clustering part is also flexible to be sub-
stituted by any advanced algorithms [9]. The future work will
be focused on self-parameter-tuning [18], estimating the num-
ber of clusters automatically, and iterative kernelized LEC [6].

Table 2. Clustering results on AAI male face images.

Method Parameter Dim. � Error Rate (%)
(r, σ2) (T., B.) (� / 600)

K-means None 780 40.83 (245/600)
PCA100+K-means None 100 (T) 40.83 (245/600)
PCA1+K-means None 1 (T) 35.33 (212/600)
K-W+K-means σ2

= 0.5 3 (T) 29.00 (174/600)
NJW σ2

= 0.1 3 (T) 30.67 (184/600)
LEC-2 r = 0.005 1 (B) 20.67 (124/600)
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