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ABSTRACT

For data samples in R
n, the mean is a well known estimator.

When the data set belongs to an embedded manifold M in
R

n, e.g. the unit circle in R
2, the de nition of a mean can be

extended and constrained toM by choosing either the intrin-
sic Riemannian metric of the manifold or the extrinsic metric
of the embedding space. A common view has been that ex-
trinsic means are approximate solutions to the intrinsic mean
problem. This paper study both means on the unit circle and
reveal how they are related to the ML estimate of indepen-
dent samples generated from a Brownian distribution. The
conclusion is that on the circle, intrinsic and extrinsic means
are maximum likelihood estimators in the limits of high SNR
and low SNR respectively.

Index Terms— Signal Processing, Maximum likelihood
estimation, Signal representations, Diffusion equations

1. INTRODUCTION

The mean of a set of scalar- or vector-valued data points is
a well known quantity, often used to estimate a parameter in
presence of noise. Manifold-valued data is gaining impor-
tance in applications and for this kind of data several exten-
sions of the mean have been proposed[1, 2, 3]. While the
mean for scalar- and vector-valued data can be de ned as a
point in the data space minimizing the sum of squared dis-
tances to all the other points, the natural extension to manifold-
valued data is to replace the metric and restrict the search to a
minimizer on the manifold.

1.1. The Intrinsic Mean

The intrinsic mean for a set of N data points xi in a compact
manifoldM is de ned using the Riemannianmetric dM (x, y),
i.e. the geodesic distance between two points x and y in the
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Fig. 1. A schematic view of how the intrinsic mean (left) and ex-
trinsic mean (right) are calculated on S

1. Black dots are data points
and the means are marked by crosses. The intrinsic mean is a point
on S

1 minimizing the sum of squared intrinsic distances (curved ar-
rows), while the extrinsic mean is a point on the circle minimizing
the sum of squared extrinsic distances (straight arrows). The white
dot is an intermediate result in the calculation of the extrinsic mean,
i.e. the mean of the data points in the extrinsic space R

2, which is
followed by an orthogonal projection back to S

1. This procedure is
equivalent to the minimization in (1), which explains the popularity
of the extrinsic mean [3].

manifold [1]:

xint = arg min
q∈M

N∑
i=1

d2
M (xi, q).

While the (set of) global minimizer(s) might be dif cult to
compute, one may look for local minimizers, which can be
guaranteed to be unique if the distributions of points xi are
enough localized inM [1]. The intrinsic mean is often seen as
the natural generalization of means to manifold-valued data.
The drawback is that it is relatively complicated to compute,
when implemented as a (local) minimization over a non-linear
manifold. The procedure is illustrated in Fig. 1.

1.2. The Extrinsic Mean

When the manifoldM is embedded in a Euclidean space,Rn,
it is sometimes faster to calculate the so called extrinsic mean.
This involves two steps: 1) Calculation of the mean of the data
points seen as vectors in the Euclidean space. 2) A shortest
distance projection back to the manifold. This is illustrated
in Fig. 1 and is equivalent [3] to solving the following mini-
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mization problem

xext = arg min
q∈M

N∑
i=1

|xi − q|2. (1)

It is essentially the same expression as for the intrinsic mean,
except that the Riemannianmetric is replaced by the Euclidean
metric. Note that boldface, e.g. q, is used when we may in-
terpret the point as a vector in a vector space R

n, while q is
used for a point in a general manifoldM and sometimes refer
to its coordinate (angle). If there exists a natural embedding
of a manifold for which the shortest projection back to the
manifold is easy to compute, then the main advantage of the
extrinsic mean is that iterative optimization over a non-linear
manifold can essentially be replaced by a two-step procedure.
This is the case for the unit circle, S1, but also for other com-
pact symmetric manifolds such as n-dimensional spheres, Sn,
and n-dimensional projective spaces RP

n.

2. MODELING NOISE BY BROWNIANMOTION

It is well known that the mean for a set of data points in R
n

is also the maximum likelihood (ML) estimate of x for the
model xi = x+ni where the noise is modeled by a Gaussian
distribution, ni ∈ N(0, σI), generating a set of independent
and identically distributed (i.i.d.) data points. InR

n the Gaus-
sian distribution is also a model for Brownian motion, i.e. the
resulting distribution of a random walk or diffusion process.
The concept of diffusion is easy to extend to manifolds in gen-
eral and for this reason we choose to model noise by a Brow-
nian distribution. We will now start with an interpretation of
the mean value as the ML estimate for a model where noise
in R

n is modeled using Brownian motion and then proceed to
the case of Brownian noise on S

1.

2.1. Means as ML estimates in R
n

The isotropic Gaussian distribution in R
n is related to Brow-

nian motion and the diffusion equation, which is also equiv-
alent to the heat equation. Given a distribution I(p, 0), de-
scribing the amount of particles at position p and time t = 0,
the diffusion equation states

It(p, t) = DΔpI(p, t) (2)

where D is the diffusion coef cient, It is the derivative of
I w.r.t. time and Δp is the Laplacian operator acting in the
spatial domain. Since D is not important in this paper, we let
D = 1/4 for simplicity. The solution to the diffusion equation
at a time t is obtained by convolution in the spatial domain,

I(p, t) =

∫
Rn

K(p,q, t)I(q, 0)dq.

K(p,q, t) is the so called diffusion kernel,

K(p,q, t) =
1

(πt)n/2
exp

[
−|p− q|2

t

]
.

To study the behavior of a single particle moving according to
a Brownian motion diffusion process, onemay choose I(p, 0)
to be a Dirac function δ(p− x).
Modeling noise using a Brownian (Gaussian) distribution

in R
n now yields the following likelihood function for a set

of i.i.d. data points:

L(x) = P (x1,x2 . . .xN |x)

= P (x1|x)P (x2|x) . . . P (xN |x)

= C1

N∏
i=1

exp

[
−1

t
(xi − x)T (xi − x)

]

= C1 exp

[
−1

t

N∑
i=1

(xi − x)T (xi − x)

]

= C2 exp

[
−1

t
N(x− x)T (x− x)

]
,

for some constants C1 and C2. From this we see that regard-
less of t, the ML estimate of x is the mean x. We also note
that both the intrinsic and extrinsic mean in R

n is x, since R
n

is at.

2.2. Intrinsic Means as ML estimates in S
1

Given the results for R
n it is a reasonable approach to in-

vestigate the ML estimate of i.i.d. Brownian distributions on
M = S

1, the unit circle. The diffusion kernel on S
1 can be

modeled using a wrapped Gaussian distribution [4],

K(p, q, t) =
1√
πt

+∞∑
k=−∞

exp

[
− (dM (p, q) + 2πk)2

t

]
. (3)

Modeling noise using P (xi|x) = K(xi, x, t) gives an expres-
sion for the likelihood, similar to the case for R

n, which we
seek to maximize,

arg max
x∈M

L(x) = arg max
x∈M

P (x1, x2 . . . xN |x)

= arg max
x∈M

P (x1|x)P (x2|x) . . . P (xN |x)

= arg max
x∈M

N∑
i=1

log(P (xi|x)).

Finding the ML estimate in the general case is dif cult and
for this reason we rst study what happens in the limit when
t→ 0+. Due to a formula by Varadhan [5, 4], it is known that

lim
t→0+

t log(K(p, q, t)) = −d2
M (p, q)

2

uniformly in (p, q) ∈ S
1 × S

1. For any x t > 0 we have

argmax
x∈M

log(L(x)) = arg max
x∈M

t log(L(x)),
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and for this reason

lim
t→0+

argmax
x∈M

L(x) = lim
t→0+

argmax
x∈M

t log(L(x))

= argmax
x∈M

N∑
i=1

−d2
M (x, xi)

2

= arg min
x∈M

N∑
i=1

d2
M (x, xi)

= xint.

This means that the above ML estimate converges to xint

when t→ 0+.

2.3. Extrinsic Means as ML estimates in S
1

Since L(x) approached xint in the limit t → 0+, it is now
interesting to also investigate the behavior when t → ∞. In-
stead of direct use of (3), Fourier series are applied to solve
(2) to obtain the diffusion kernel on S

1 [6]. At t = 0,

K(p, q, 0) = δ(dM (p− q))

=
1

2
A0 +

∞∑
n=1

(An cos(np) + Bn sin(np)) ,

An =
1

π
cos(nq) (n = 0, 1, 2, . . .)

Bn =
1

π
sin(nq) (n = 1, 2, 3, . . .),

where p and q are either points on S
1 or angles in the interval

[−π, π[. This kernel evolves according to

K(p, q, t) =
1

2
A0 +

∞∑
n=1

e−n2t/4[An cos(np) + Bn sin(np)].

Once again, the data is modeled by P (xi|x) = K(xi, x, t).
We observe that

P (xi|x) =
1

2π
+ ε[A1 cos(xi) + B1 sin(xi)] + O(ε2)

where ε → 0 when t → ∞. Thus when t → ∞, the likeli-
hood function is

L(x) =

N∏
i=1

P (xi|x)

=
1

(2π)N
+

ε

2π

N∑
i=1

[A1 cos(xi) + B1 sin(xi)]

+O(ε2).

Any such likelihood function will converge towards a con-
stant value, L(x) → 1/(2π)N , when t → ∞. The dominant
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Fig. 2. Top: Three samples xi have been collected on S
1, −2.80,

−2.11 and 0.34. For t = 0.1 their individual likelihood functions
look like in the plot. Bottom: The total normalized likelihood func-
tion L(x) peaks around −1.52, which is close to the intrinsic mean:
xint = (−2.80 − 2.11 + 0.34)/3 ≈ −1.52.

terms however, important for nding the maximum of L(x),
are generically A1 and B1 and

arg max
x∈M

L(x) = arg max
x∈M

N∑
i=1

cosx cosxi + sin x sin xi

= arg max
x∈M

N∑
i=1

xT xi =

= x/|x| = xext.

Strange as it might seem, searching for the maximizer of a
function which converges towards a constant value, it will in
fact always exist a unique maximum for every 0 < t < ∞,
and generically also a unique maximizer.

3. EXPERIMENTS

To verify the results we implemented the diffusion equation
on the unit circle in MATLAB and calculated the likelihood as
a function of t. The results on a small data set xi are shown
for three choices of t in Fig. 2–4.

4. DISCUSSION

In this paper, we let a Brownian distribution replace the tra-
ditional Gaussian distribution. By varying the parameter t we
model the variance of the noise in the i.i.d. samples (mea-
surements) xi ∈ S

1. The signal model is a constant manifold-
valued function with the value x ∈ S

1. Both the theoretical
analysis and the experiments in this paper show that the in-
trinsic and extrinsic means on S

1 can be regarded as ML esti-
mates in the limits of high and low SNR respectively for this
particular choice of models.
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Fig. 3. Same as in Fig. 2, but t = 0.5. Top: Individual likelihood
functions. Bottom: The total normalized likelihood.
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Fig. 4. Same as in Fig. 2, but t = 1.0. Top: Individual likelihood
functions. Bottom: The total normalized likelihood peaks around
−2.11, which is close to the extrinsic mean:
xext = tan−1 (sin(−2.80)+sin(−2.11)+sin(0.34))

(cos(−2.80)+cos(−2.11)+cos(0.34))
− π ≈ −2.11.

A close inspection of the experiment shown in Fig. 2–
4, for a wider range of t than shown in the gures, revealed
convergence to both the intrinsic and extrinsic mean when
t → 0+ and t → ∞. The only reason for not including
gures of experiments with very large or small t in this pa-
per was the dif culty in obtaining a reasonable scaling of the
plots. In Fig. 3 we observe the possibility of several local
maxima for certain choices of t, while Fig. 2 and 4 demon-
strate the typical behavior in the limits.
The result of this paper points towards a more balanced

view of the intrinsic and extrinsic means, since they are both
extreme cases for our model on S

1. Other researchers, see for
instance [2], have regarded the intrinsic mean for e.g. rotation
matrices as the “natural” mean, while the extrinsic mean has
been regarded as an approximation. The question is if a more
balanced view, advocated in this paper for S

1, is valid for a
general compact manifoldM .

Due to the generality of Varadhan’s formula [5, 4], it is in
fact possible to extend the results for the ML estimate when
t → 0+, from S

1 to any connected and compact manifold.
This gives a probabilistic motivation for intrinsic means on
such manifolds in general. Indirectly it also motivates the
use of the squared geodesic distance, d2

M (x, y), as a building
block in other estimates on manifolds, for instance estimates
facilitating basic interpolation and ltering. While this paper
show the essence of the idea on S

1, the details for the general
case will be investigated in future research.
Despite the apparent symmetry of intrinsic and extrinsic

means on S
1 presented in the paper, extending the results for

the extrinsic mean and the ML estimate when t →∞ to gen-
eral manifolds will not be as easy as for the case t → 0+

hinted above. In particular, the extrinsic mean depends on
how the manifold M is embedded in R

n. For “natural” em-
beddings of certain symmetric and compact manifolds, such
as S

n and RP
n, which also include important special cases

such as the sphere S
2 and the group of rotations in R

3, we do
expect that the ML estimate will converge towards the extrin-
sic mean when t → ∞. Thus we expect that future research
will give a probabilistic motivation, based on the Brownian
model of noise, for extrinsic means on e.g. the unit spheres
and rotation matrices in R

n.
In summary, this paper has revealed a more balanced view

on intrinsic and extrinsic means on S
1, which shows the essence

of an idea which we believe is useful for the understanding of
a wider class of algorithms performing signal processing and
estimation on manifold-valued signals and data.
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