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ABSTRACT

In this paper, the Maximum Likelihood Estimator (MLE) of
position in satellite based navigation systems is studied. Re-
cent results have shown that this novel approach provides an
interesting way of introducing prior information in the posi-
tion estimation and that the estimator is consistent for large
sample sizes. However, one of the main drawbacks of this
approach is the lack of a computationally ef cient optimiza-
tion algorithm due to the high dimensionality and nonlinear-
ity of the resulting cost function, since there is not a closed
form solution for this estimator. The aim of this paper is to
investigate the application of the Space-Alternating General-
ized Expectation Maximization (SAGE) algorithm to the esti-
mation of position. The SAGE algorithm is a low-complexity
generalization of the EM (Expectation-Maximization) algo-
rithm, which iteratively approximates the MLE. Computer
simulation results are provided, comparing the performance
obtained by the algorithm with the Cramér-Rao Bound.

Index Terms— Maximum likelihood estimator, Optimiza-
tion methods, Position estimation.

1. INTRODUCTION

Global Navigation Satellite Systems (GNSS) is the general
concept used to identify those systems that allow user posi-
tion computation basing on a constellation of satellites. Spe-
ci c GNSS systems are the well-known american GPS or the
forthcoming european Galileo. Both systems rely on the same
principle: the user computes its position from measured dis-
tances between the receiver and a set of in-view satellites.
These distances are calculated estimating the propagation time
that transmitted signals take from each satellite to the receiver
and geometrically solving the position of the receiver by tri-
lateralization [1]. Thus, the input for this estimation is the
pseudorange of each satellite (i.e. the distance from the re-
ceiver to each satellite). In this paper, we take a novel ap-
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proach to positioning by obtaining the Maximum Likelihood
Estimator (MLE) of position, as opposite to synchronization–
parameter based positioning where the synchronization pa-
rameters are rst estimated and then the position is computed
with these estimates. The approach herein proposed is seen to
overcome many limitations of conventional GNSS receivers
such as multipath propagation or signal blockages [2].
In a large variety of signal processing applications the

Maximum Likelihood Estimator is the chosen approach for
parameter estimation purposes. Unfortunately, in many cases
there is not a closed-form solution for this estimator but a
cost function to be optimized, as is the case of GNSS posi-
tioning. The cost function can be multi–dimensional and/or
non–linear, which makes not feasible the use of gradient–
based methods, such as the Steepest Descent or the Newton–
Raphson algorithms. These algorithms diverge in the pres-
ence of high nonlinearities, thus alternative methods must be
studied to deal with the optimization in a more suitable way.
To this aim, the Space-Alternating Generalized Expectation
Maximization (SAGE) algorithm has been investigated. The
SAGE algorithm is a low–complexity generalization of the
EM (Expectation Maximization) algorithm [3] which sequen-
tially approximates the MLE [4]. A study of the computa-
tional cost required has been done and simulations are pro-
vided to compare the algorithm performance with the Cramér-
Rao Bound in terms of positioning error.

2. MAXIMUM LIKELIHOOD ESTIMATION OF
POSITION IN GNSS

In a GNSS receiver, measurements are considered to be a su-
perposition of plane waves corrupted by thermal noise and,
possibly, interferences and multipath. The antenna receives
M scaled, time–delayed and Doppler–shifted signals corre-
sponding to each in-view satellite. The received complex
baseband signal is modeled as

x(t) =
M

∑
i=1
aisi(t− τi(γ))exp{ j2π fdi(γ)t}+n(t) (1)
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where si(t) is the transmitted complex baseband low rate BPSK
signal spreaded by the pseudorandom code of the i–th satel-
lite, considered known, ai is its complex amplitude, τi(γ) is
the time-delay, fdi(γ) the Doppler deviation and n(t) is zero-
mean additive white Gaussian noise (AWGN) of variance σ2n.
The novelty relies on gathering all user motion parameters
in a real vector γ, which can contain for instance position
and velocity γ =

[
pT ,vT

]T , and noticing that time–delays
and Doppler shifts can be expressed as functions of γ from
pseudorange and pseudorange rate expressions [1] [2].
If a receiver captures K snapshots, the model in equation

(1) can be expressed as

x= aD(γ)+n (2)

where

• x ∈ C
1×K is the observed signal vector,

• a∈C
1×M is a vector whose elements are the amplitudes

of the M received signals a= [a1 . . . aM],

• D(γ) = [d(t0) . . . d(tK−1)] ∈ C
M×K , known as the

basis–function matrix, being d(t) = [d1 . . . dM]T ∈
C
M×1, where each component is de ned by di = si(t−

τi(γ))exp{ j2π fdi(γ)t} the delayed and Doppler shifted
narrowband signal envelopes, and

• n∈C
1×K represents K snapshots of zero-mean AWGN

with piecewise constant variance σ2n during the obser-
vation interval.

We now consider the Maximum Likelihood Estimation
(MLE) of signal parameters taking into account the measure-
ment model presented in equation (2), parametrized by mo-
tion parameter vector γ. We rst take into account that the
MLE is equivalent to the solution obtained by a Least Squares
(LS) criteria under the assumption of zero-mean AWGN. Ne-
glecting additive and multiplicative constants, maximizing the
likelihood function of measurement equation (2) is equivalent
to minimizing the following Nonlinear Least Squares (NLLS)
problem

Λ(a,γ) = ||x−aD(γ)||2 (3)

where the operator || · || denotes the L2–norm of a vector. A
straightforward gradient computation yields to the MLE of
complex amplitudes:

âML = xDH (γ)
(
D(γ)DH (γ)

)−1 ∣∣∣
γ=γ̂ML

(4)

The ML estimation of considered parameters is then ob-
tained by minimizing the nonlinear cost function resulting
from the substitution of (4) in (3),

γ̂ML = argmin
γ
{Λ(γ)} (5)

where the resulting ML cost function can be de ned in terms
of a signal-subspace projection:

Λ(γ) = xxH −xDH (γ)
(
D(γ)DH (γ)

)−1D(γ)xH

= x
(
I−DH (γ)

(
D(γ)DH (γ)

)−1D(γ)
)
xH

= x(I−Π(γ))xH =
∣∣∣
∣∣∣xΠ⊥ (γ)

∣∣∣
∣∣∣
2

(6)

being Π(γ) the projection matrix onto the subspace spanned
by DH (γ) and Π⊥ (γ) is its orthogonal complement. In ad-
dition, we have taken into account that projection matrices
are idempotent. Hence, the cost function is equivalent to the
projection of data in the orthogonal complement of the signal
subspace, de ned by D(γ).
Whereas in the synchronization–parameter based position-

ing a two-dimensional optimization has to be performed for
each tracked satellite [1], the position-dependent cost func-
tion takes into account signals coming from all satellites to
obtain a position estimate, dealing with a single multivariate
optimization problem for all the received satellites. For the
sake of clarity and without loss of generality, we now consider
that one of the coordinates (say z) and the velocity vector are
known (or vary slowly with time and can be tracked by other
means) so that we can plot the three-dimensional likelihood
function, being γ = [x,y]T . Figure 1 shows the cost func-
tion in equation (5) in a realistic GNSS scenario. The consid-
ered benchmark scenario is composed of 6 satellites forming
a four–sided pyramid in a hemisphere with two satellites at
zenith, being all satellites equally spaced. According to [1],
this constellation geometry optimizes the Geometric Dilution
Of Precision (GDOP), which is a parameter that gives infor-
mation of the quality of the constellation geometry.
A gradient–like method can be used to iteratively mini-

mize the cost function, such as the Steepest Descent or the
Newton-Raphson algorithm. However, these methods diverge
when the function to optimize has high nonlinearities and an
increasing dimensionality, in the general multi-dimensional
case γ could consist of the three–dimensional position, veloc-
ity and acceleration among other possible parameters. Hence,
alternative methods must be studied to deal with the optimiza-
tion in a more suitable and implementable way. Aiming at
nding a computationally affordable algorithm to compute
the MLE of position, Expectation-Maximization algorithms
have been explored.

3. THE SAGE ALGORITHM

The Space-Alternating Generalized Expectation Maximiza-
tion algorithm, SAGE for short, is a low–complexity gener-
alization of the EM (Expectation Maximization) algorithm,
which iteratively approximates the MLE [4]. The SAGE al-
gorithm deals with high dimensional and non-linear cost func-
tions, instead of optimizing directly the cost function it per-
forms a sequence of optimization steps in spaces of lower di-
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Fig. 1. The ML cost function in equation (5) for a realistic
scenario (M = 6 satellites) as a function of different x and y
coordinate errors, denoted as εx and εy respectively. In gen-
eral, a single multi-dimensional optimization has to be solved.

mension and thereby reducing the problem complexity con-
siderably. Basically, the SAGE algorithm sequentially es-
timates a reduced subset of the unknown parameter vector
while keeping the others xed.
Without loss of generality, we now consider the case of

estimating the three-dimensional receiver position. Thus, the
vector of unknown parameters considered is composed of the
receiver coordinates:

γ = p�
[
x y z

]T (7)

As aforementioned, instead of optimizing the cost function
directly with respect to γ, the SAGE algorithm simpli es the
problem into a number of decoupled optimization problems.
Thus, performing single optimization steps with respect to a
reduced set of elements of the vector of unknown parame-
ters at a time. In our case Λ(γ) is optimized with respect to
a single parameter in each M-step. Hence, an iteration cy-
cle (de ned as the consecutive iteration steps for updating the
whole vector γ) of the SAGE algorithm is expressed as

x̂
′′

= argmin
x

{
Λ

(
x ; ŷ

′
, ẑ
′)}

ŷ
′′

= argmin
y

{
Λ

(
y ; x̂

′′
, ẑ
′)}

ẑ
′′

= argmin
x

{
Λ

(
z ; x̂

′′
, ŷ
′′)}

(8)

where (·)′ denotes previous parameter estimation and (·)′′ the
updated estimate. The multivariate optimization problem in
equation (5) is here splitted in several one-dimensional opti-
mization problems, to be performed iterativelyNt times. These
one-dimensional optimizations can be easily solved by vary-

ing the corresponding γ component and obtaining the opti-
mum by gradient computation and interpolation [5] [6].
In the general case of an L–dimensional unknown param-

eters space γ, we can de ne

γ̃(i) =
[
γ
′′
(1), ...,γ

′′
(i−1),γ

′
(i+1), ...,γ

′
(L)

]T
(9)

being an (L− 1)× 1 vector where all considered parameters
are xed to its latest estimates except for the i–th element of γ
on which the optimization is performed. Hence, the algorithm
operates as:

AlgorithmMLE of position with the SAGE algorithm
(∗ SAGE implementation of equation (5) ∗)
1. Initial Estimates: γ̂ ′

2. k = 1
3. for i← 1 to L
4. E-step: Compute Λ(γ(i); γ̃(i))
5. M-step: γ̂′′(i) = argmin

γ(i)

{
Λ(γ(i); γ̃(i))

}

6. end
7. k← k+1
8. if k ≤ Nt
9. then
10. γ̂

′ ← γ̂
′′

11. go to line 3
12. else
13. Final Estimates: γ̂SAGE ← γ̂

′′

14. end
15. Extract position information from the estimated γ̂SAGE

vector, p̂.

4. COMPUTATIONAL COST

As the most burdensome operation of the algorithm is to eval-
uate the cost function in equation (6), it is useful to de ne
CΛ as the computational effort needed to compute it. Hence,
from the pseudo code description MLE of position with the
SAGE algorithm it is apparent that the computational cost of
the SAGE algorithm is

CSAGE = Nt ·L ·Ne ·CΛ (10)

where Ne is the number of points used to characterize each
one–dimensional problem, i.e. the number of samples of the
cost function computed in the E-step.
For simulation purposes, two different set of algorithm

parameters have been used. On the one hand, the proposed
SAGE algorithm use typical values of Ne = 20 points and
Nt = 8 iterations for estimating L = 3 parameters. Thus, the
computational cost is CSAGE = 480 ·CΛ, as arises from equa-
tion (10). On the other hand, another set of values consid-
ered are Ne = 20 points and Nt = 12 iterations, meaning that
CSAGE = 720 ·CΛ computational resources are needed.
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5. SIMULATION RESULTS

The simulated satellites, in the benchmark constellation de-
scribed in Section 2, transmit C/A code GPS signals, whose
chip rate is fc = 1.023 MHz. The received signals are ltered
with a 2 MHz bandwidth lter and a IF sampling frequency of
fs= 5.714MHz is considered. 1 ms of data has been recorded
and processed. The three-dimensional coordinates of the re-
ceiver compose the vector of unknown parameters γ, as con-
sidered in equation (7).
In Figure 2 the performance of the proposed SAGE al-

gorithm is shown in terms of positioning Root Mean Square
Error (RMSE), de ned as

ξ = ||p− p̂||=
√

(x− x̂)2+(y− ŷ)2+(z− ẑ)2 (11)

being p̂ the estimated position vector and the operator || · || the
L2–norm of a vector. The considered carrier-to-noise density
ratio (C/N0) values are typical in GNSS links. In addition, the
Cramér-Rao Bound (CRB) of variances has been computed
in order to assess the optimal behavior of the SAGE algo-
rithm. Taking into account different computational costs, as
explained in Section 4, we have also considered two different
initialization points. The initial ambiguity is identically de-
ned for all coordinates, thus forming a sphere whose center
is the position guess and its radius the considered uncertainty
(de ned as ru). From Figure 2, it is apparent that the SAGE
algorithm depends on the error committed in the initialization
point. Accordingly, the lower the ambiguity radius, the less
the computational burden needed to achieve the CRB. In par-
ticular, for ru = 1 meter, the algorithm attains the CRB even
when relaxing the computational requirements. The SAGE
algorithm can claim to properly approximate the ML solution
when the CRB is attained, which is known to yield the lower
variance, i.e. the CRB. In addition, the stabilization of the er-
ror to a certain value is mainly due to the need of increasing
the number of iterations of the algorithm. At the light of the
results, it is convenient to study proper initialization methods
in order to reduce the computational complexity needed by
the algorithm to achieve the lower bound.

6. CONCLUSIONS

In this paper, an ef cient way of implementing the Maximum
Likelihood Estimator (MLE) of position in GNSS receivers
is proposed. This novel approach to position calculation in
GNSS receivers was seen to be robust against fading multi-
path channels [2] and signal blockages [7]. The SAGE algo-
rithm is studied to iteratively approximate the MLE, being a
nonlinear and multidimensional function of the unknown pa-
rameters. The paper contains a description of the proposed
algorithm and a computational cost study. Computer simula-
tion results show that the algorithm is sensitive to proper ini-
tialization, thus stressing the need of investigating good ini-
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Fig. 2. Position estimation error versus C/N0 of the satellites
in the benchmark scenario considered.

tialization strategies. Nonetheless, for proper initial estimates
the SAGE algorithm is seen to attain the Cramér-Rao Bound.

7. REFERENCES

[1] B.W. Parkinson and J.J. Spilker, Eds., Global Position-
ing System: Theory and Applications, vol. I, II, Progress
in Astronautics and Aeronautics. American Institute of
Aeronautics, Inc., Washington DC, 1996.

[2] P. Closas, C. Fernández-Prades, and J. A. Fernández-
Rubio, “Maximum Likelihood Estimation of Position in
GNSS,” IEEE Signal Processing Lett., May 2007, to
appear.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maxi-
mum likelihood from incomplete data via the EM algo-
rithm,” Journal of the Royal Statistical Society B, vol. 39,
1977.

[4] J. A. Fessler and A. O. Hero, “Space-Alternating Gen-
eralized Expectation-Maximization Algorithm,” IEEE
Trans. Signal Processing, vol. 42, no. 10, pp. 2664–2677,
October 1994.

[5] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus,
and K. I. Pedersen, “Channel Parameter Estimation
in Mobile Radio Environments Using the SAGE Algo-
rithm,” IEEE J. Select. Areas Commun., vol. 17, no. 3,
pp. 434–449, March 1999.

[6] F. Antreich, O. Esbri-Rodriguez, J.A. Nossek, and
W. Utschick, “Estimation of Synchronization Parameters
using SAGE in a GNSS-Receiver,” in Proceedings of the
ION GNSS 2005, Long Beach, CA, September 2005.

[7] P. Closas, C. Fernández-Prades, J. A. Fernández-Rubio,
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