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1. ABSTRACT

The multi-dimensional harmonic model has attracted considerable
attention for a variety of applications in signal processing. Stoica
and Nehorai have derived the Asymptotic (ie., for large analysis
duration) Cramér-Rao lower Bound (ACRB) which represents the
minimal theoretical variance in the estimation of the model pa-
rameters for a one-dimensional harmonic model of order M . In
this work, we generalize and analyze the ACRB associated to a
M -order harmonic model of dimension P with P > 1.

Keywords: Parameter estimation, multidimensional signal pro-
cessing.

2. INTRODUCTION

The one-dimensional harmonic model is very useful in many elds
such as signal processing, audio compression, digital communica-
tions and others. A generalization of this model to P > 1 di-
mensions can be encountered in several domains such as MIMO
channel estimation [1], wireless communications [2], passive lo-
calization and radar processing, etc. In addition, we can nd in
[3, 4] an analysis of the identi cation problem associated with this
model.
In this contribution, we derive Asymptotic (ie., for large analysis
duration) expressions of the Cramér-Rao Lower bound (ACRB)
for aM -order harmonic model (sum ofM waveforms) of dimen-
sion P . This work can be viewed as an extension of the seminal
work of Stoica and Nehorai [5] for the one-dimensional harmonic
model. Although, much work has been done on the determina-
tion of the ACRB for small P , ie., for P = 2 (two-dimensional
harmonic model) [6] or for P = 3; 4 in the context of a sensor
array [7]. But to our best knowledge, we cannot nd a systematic
characterization of the ACRB for any dimension P . The philoso-
phy of our approach is similar that of reference [7] since we base
our derivation on tensor algebra but our ACRB is dedicated to the
multi-dimensional harmonic model of any dimensionP and in par-
ticular, we examine its asymptotic properties.
We begin by the standard result that a M -order harmonic model
of dimension P follows a CanDecomp/Parafac (CP) model [8]
of order M . In other words, the rank of the P -order tensor
associated with this model is M and can be exactly decom-
posed into the sum of M rank-1 tensors. Using this formal-
ism, we show that the ”order of magnitude” of the ACRB for the
the signal parameters (angular-frequency, real amplitude and ini-

tial phase) are respectively O(N−P−2), O(N−P ) and O(N−P )
where N is the analysis duration. We have also shown that the
quotient of two consecutive ACRB for the signal parameters, ie.
ACRB(P )(.)/ACRB(P+1)(.), isO(N) and becomes exactly equal
to N for larger dimension P . Consequently, we prove the intu-
itive idea that increasing the dimension of the model decreases the
ACRB and thus improves the minimal theoretical variance of the
estimated model parameters.

3. DEFINITION OF THE MULTI-DIMENSIONAL
HARMONIC MODEL

We de ne a noisy M -order harmonic model of dimension P ac-
cording to

[Y]n1...nP
= [X ]n1...nP

+ σ[N ]n1...nP
(1)

where Y , X and N are three P -order hypercubic tensors of size
N , σ is a positive real scalar and

[X ]n1...nP
=

M�
m=1

αm

P�
p=1

eiωmnp . (2)

is the noise-free M -order harmonic model of dimension P with
np ∈ [0 : N − 1]. The m-th complex amplitude is denoted by
αm = ameiφm where am > 0 is them-th real amplitude and φm

is the m-th initial phase. It is well-known that this model follows
a CP model [8, 3, 4] and its associated vectorized expression is

y = vec(Y) = x + σn ∈ C
NP

(3)

where n = vec(N ) is the additive white Gaussian noise of param-
etersN (0, INP ) and

x = vec(X ) =
M�

m=1

αm

�
d(ωm) ⊗ . . . ⊗ d(ωm)

�
� �� �

P times

(4)

in which ⊗ denotes the Kronecker product and

d(ω) =
	
1 eiω . . . eiω(N−1)


T
.
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4. ACRB FOR THE MULTI-DIMENSIONAL HARMONIC
MODEL

The noisy observation y in (3) is a function of the real parameter
vector θ given by θ =

�
θ′T σ2

�T where θ′ = [ωT aT φT ]T ,
ω = [ω1 . . . ωM ]T , a = [a1 . . . aM ]T and φ = [φ1 . . . φM ]T .
A very famous result [9, 10] is the following. Let Γ =

E
�

(θ̂ − θ)(θ̂ − θ)T
�
be the covariance matrix of an unbiased

estimate of θ, denoted by θ̂ then under quite general conditions,
Γ − ACRB(P )(θ), where ACRB(P )(.) is the Asymptotic Cramér-
Rao lower Bound associated with a harmonic model of dimension
P , is a positive semide nite matrix.
The likelihood function of y ∼ N (x, σ2INP ) is given by

L (y) =
1

(πσ2)NP
e
− 1

σ2
‖y−x‖2

=
1

(πσ2)NP
e

−1

σ2

�
�
�
�
�
y−

M
Σ

m=1
αm(d(ωm)⊗...⊗d(ωm))

�
�
�
�
�

2

.

The log-likelihood function is de ned by

f(θ) = ln (L(y))

= c −
1

σ2

�����y −
M�

m=1

αm

�
d(ωm) ⊗ . . . ⊗ d(ωm)

������
2

where c is a given constant. As the signal and nuisance parameters
are decoupled, the Fisher Information Matrix (FIM) is given by

Fθθ =

	
2

σ2 Fθ′θ′ 0
0 Jσ2σ2



(5)

where

Fθ′θ′ =

�
�Jωω Jωa Jωφ

JH
ωa Jaa Jaφ

JH
ωφ JH

aφ Jφφ



� (6)

in which we have de ned

Jpq = �

��
∂x

∂p

�H
∂x

∂q

�
(7)

with �{.} being the real part of a complex number.

4.1. Asymptotic CRB for a M -order harmonic model of di-
mension P

In the sequel, we consider large analysis duration (N → ∞) where
closed-form expressions of the ACRB(P ) can be obtained.

Theorem 1 The ACRB(P ) for a M -order harmonic model of di-
mension P de ned in (1) with respect to (wrt.) the model parame-
ter θ′, ie., ACRB(P )(θ

′), is given by

ACRB(P )(ω�) =
6

PNP+2SNR�

, (8)

ACRB(P )(a�) =
a2

�

2NP SNR�

, (9)

ACRB(P )(φ�) =
3P + 1

2NP SNR�

. (10)

where SNR� = a2
�/σ2.

Proof: The partial derivatives of the noise-free signal wrt. the
angular-frequency, the real amplitude and the initial phase are
given by

∂x

∂ω�

= iα�

�
∂d(ω�)

∂ω�

⊗ d(ω�) ⊗ . . . ⊗ d(ω�)

+ d(ω�) ⊗
∂d(ω�)

∂ω�

⊗ . . . ⊗ d(ω�) + . . .

+ d(ω�) ⊗ . . . ⊗ d(ω�) ⊗
∂d(ω�)

∂ω�

�
∂x

∂a�

= eiφ� (d(ω�) ⊗ . . . ⊗ d(ω�))

∂x

∂φ�

= iα� (d(ω�) ⊗ . . . ⊗ d(ω�))

for 	 ∈ [1 : M ] and where we have denoted ∂d(ω�)
∂ω�

=

∂d(ω)
∂ω

���
ω=ω�

. Using the asymptotic properties of the harmonic

model [5],

1

N3

�
∂d(ωk)

∂ωk

�H
∂d(ω�)

∂ω�

N→∞
−→

1

3
δk−� (11)

1

N2

�
∂d(ωk)

∂ωk

�H

d(ω�)
N→∞
−→

1

2
δk−� (12)

1

N
d(ωk)Hd(ω�)

N→∞
−→ δk−�, (13)

we can derive the (k, 	)-th entry of each block of the FIM accord-
ing to

[Jωω]k� = �

��
∂x

∂ωk

�H
∂x

∂ω�

�

N→∞
−→ �

�
α∗

kα� P

�
NP+2

3
+ (P − 1)

NP+2

4

�
δk−�

�

= �

�
α∗

kα� PNP+2

�
4 + 3 (P − 1)

12

�
δk−�

�

=

�
a2

k PNP+2 3P+1
12

, for k = 	,
0, otherwise. (14)

Similarly, we have

[Jaa]k� = �

��
∂x

∂ak

�H
∂x

∂a�

�
N→∞
−→ �

�
ei(φ�−φk)NP δk−�

�

=

�
NP , for k = 	,
0, otherwise.

and

[Jφφ]k� = �

��
∂x

∂φk

�H
∂x

∂φ�

�
N→∞
−→ �

�
α∗

kα�N
P δk−�

�

=

�
a2

k NP , for k = 	,
0, otherwise.
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and

[Jaφ]k� = �

��
∂x

∂ak

�H
∂x

∂φ�

�

N→∞
−→ �

�
ie−iφkα�N

P δk−�

�
(15)

= 0, ∀k, 	

and

[Jωa]k� = �

��
∂x

∂ωk

�H
∂x

∂a�

�

N→∞
−→ −�

�
iα∗

keiφ�
P

2
NP+1δk−�

�
(16)

= 0, ∀k, 	.

For k = 	, ie−iφkα� in (15) and iα∗
keiφ� in (16) are pure imag-

inary numbers. This explains why Jaφ and Jωa are null matrices.
Finally, we have

[Jωφ]k� = �

��
∂x

∂ωk

�H
∂x

∂φ�

�

N→∞
−→ �

�
α∗

kα�
P

2
NP+1δk−�

�

=

�
a2

k
P
2

NP+1, for k = 	,
0, otherwise. (17)

Consequently, the blocks of the FIM are asymptotically diago-
nal or null and we obtain

Jωω =
P (3P + 1)

12
NP+2Δ2

Jaa = NP IM

Jφφ = NP Δ2

Jaφ = Jωa = 0

Jωφ =
P

2
NP+1Δ2

whereΔ = diag{a1, . . . , aM}. Finally, the FIM is given by

Fθ′θ′ =

	

P (3P+1)

12
NP+2Δ2 0 P

2
NP+1Δ2

0 NP IM 0
P
2
NP+1Δ2 0 NP Δ2

�
� . (18)

Thanks to the standard inverse of a partitioned matrix [5], an-
alytic expression of F−1

θ′θ′ is possible. Thus,

F−1
θ′θ′ =

	

Λ 0 ×

0 J−1
aa 0

× 0 ΘΛΘ + J−1
φφ

�
� (19)

where

Λ = (Jωω − JωφJ−1
φφ Jωφ)−1

=

�
P (3P + 1)

12
NP+2Δ2 −

P 2

4
NP+2Δ2

�−1

=

�
P (3P + 1)

12
−

P 2

4

�−1
1

NP+2
Δ−2

=
12

PNP+2
Δ−2

and Θ = J−1
φφ Jωφ =



NP Δ2

�−1 P
2
N (P+1)Δ2 = PN

2
. So, the

(3, 3)-block of matrix F−1
θ′θ′ is given by

ΘΛΘ + J−1
φφ =

PN

2

�
12

PNP+2
Δ−2

�
PN

2
+
�
NP Δ2

�−1

=
3P + 1

NP
Δ−2.

Hence, the inverse of the FIM is

F−1
θ′θ′ =

	
��


12
PNP+2 Δ−2 0 ×

0 1
NP IM 0

× 0 3P+1
NP Δ−2

�
��� .

So, the ACRB associated to a M -order harmonic model of di-
mension P is given by the diagonal terms of the FIM inverse which
proves the theorem.

4.2. Tabulation of the ACRB for several values of P

The values of the ACRB for several dimension P are given in the
following table.

P ACRB(P )(ω�) ACRB(P )(a�) ACRB(P )(φ�)

1 [5] 6

N3SNR�

a2
�

2NSNR�

2

NSNR�

2 3

N4SNR�

a2
�

2N2SNR�

7

2N2SNR�

3 2

N5SNR�

a2
�

2N3SNR�

5

N3SNR�

4 3

2N6SNR�

a2
�

2N4SNR�

13

2N4SNR�

5 6

5N7SNR�

a2
�

2N5SNR�

8

N5SNR�

4.3. Order of magnitude of the ACRB

According to the previous Theorem, we can characterize the
ACRB(P )(θ

′) according to the following corollary.

Corollary 1 Consider a M -order harmonic model of dimension
P , then we have

ACRB(P )(ω�) ∼ O

�
1

NP+2

�
(20)

ACRB(P )(a�) ∼ O

�
1

NP

�
(21)

ACRB(P )(φ�) ∼ O

�
1

NP

�
. (22)
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As a consequence of the above result, increasing the dimension
of the harmonic model decreases the ACRB.

Corollary 2 For i ∈ [1 : 3M ], the quotient of two consecutive
ACRB, ie., ACRB(P )(θ

′
i)/ACRB(P+1)(θ

′
i) is of order O(N) for

any P and is equal to N for large P .

Proof: Using (8), (9) and (10) we have

ACRB(P )(ω�)

ACRB(P+1)(ω�)
=

�
P + 1

P

�
N (23)

ACRB(P )(a�)

ACRB(P+1)(a�)
= N (24)

ACRB(P )(φ�)

ACRB(P+1)(φ�)
=

�
3P + 1

3P + 4

�
N. (25)

Hence the above expressions show that
ACRB(P )(θ

′
i)/ACRB(P+1)(θ

′
i) ∼ O(N) ≥ 0 which proves

the rst part of the corollary. For larger (in nite) P , it is direct to
see that the limit of (25) and (27) is N which proves the second
part of the corollary. Note that no condition on P is required for
the real amplitude parameter.
Consequently, for large P , the quotient of two consecutive

ACRB follows a geometric progression since this quotient is a con-
stant and we have

ACRB(P )(θ
′
i) =

1

NP−1
ACRB(1)(θ

′
i) (26)

where ACRB(1)(θ
′
i) is the bound derived by Stoica and Nehorai

[5] for P = 1.

5. NUMERICAL SIMULATIONS

In this part, we illustrate the behavior of the ACRBwrt. the dimen-
sion, P ∈ [1 : 5], of a 500-sample rst-order harmonic model. We
vary the Signal to Noise Ratio (SNR), by taking σ2 from 1 to 100
and a1 = 1. Fig. 1, Fig. 2-a and b display the ACRB of the angular
frequency, the real amplitude and the initial phase, respectively.

10 2 10 1 100
10 20

10 15

10 10

10 5

SNR

C
R
B

P=1
P=2
P=3
P=4
P=5

Figure 1: ACRB Vs. SNR (log scale) for the angular frequency of
a rst order harmonic model of dimension P .

According to these simulations, we can see clearly the gain to
consider large dimensions.
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(a) (b)

Figure 2: ACRB Vs. SNR (log scale) for a rst order harmonic
model of dimension P , (a) Real amplitude, (b) Initial phase.

6. CONCLUSIONS

In this work, the asymptotic CRB (ACRB) associated with a M -
order harmonic model of dimension P using tensors algebra has
been achieved. It has been shown that increasing the dimension
of the harmonic model decreases the ACRB and thus improves the
minimal theoretical variance of the estimated model parameters.
In addition, we have proved that the quotient of two consecutive
ACRB for the signal parameters, ie. ACRB(P )(.)/ACRB(P+1)(.),
is O(N) and becomes exactly equal to N for large dimension
P . This last result allows us to give a compact expression of the
ACRB for any dimension wrt. the well-known bound derived by
Stoica and Nehorai for P = 1.
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