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ABSTRACT

In many applications, it is required to detect, from a primary vector,
the presence of a signal of interest embedded in noise with unknown
statistics. We consider a situation where the training samples used to
infer the noise statistics do not share the same covariance matrix as
the vector under test. A Bayesian model is proposed where the co-
variance matrices of the primary and the secondary data are assumed
to be random, with some appropriate joint distribution. The prior dis-
tributions of these matrices reflect a rough knowledge about the en-
vironment. Within this framework, the minimum mean-square error
(MMSE) estimator and the the maximum a posteriori (MAP) estima-
tor of the primary data covariance matrix are derived. A Gibbs sam-
pling strategy is presented for the implementation of the MMSE es-
timator. Numerical simulations illustrate the performances of these
estimators and compare them with those of the sample covariance
matrix estimator.

Index Terms— Bayesian estimation, covariance matrix, detec-
tion, Gibbs sampler, inhomogeneities

1. INTRODUCTION

Detection of a signal of interest in a background of noise is a funda-
mental task in many applications, including radar, communications
or sonar [1]. This is especially the case for radar systems whose
core task is to detect a target amongst clutter, thermal noise and pos-
sibly jamming. Usually, the presence of a target, with given space
and/or time signature s, is sought in a (range) cell under test (CUT),
given an observation vector z -the primary data- that corresponds to
the output of an array of sensors. In the Gaussian case, when the
covariance matrix M p of the noise in the CUT is known, the op-
timal processor consists of a whitening step followed by matched
filtering [1]. However, the statistics of the noise in the CUT are gen-
erally unknown and hence M p must somehow be estimated. Thus,
central to most detection schemes is the problem of estimating the
covariance matrix of the noise in the primary data. This goal is
generally achieved through the use of independent training samples
zk, k = 1, . . . , K , (the so-called secondary data), which consist
of noise only, and would ideally share the same covariance matrix
M s, equal to M p. The training samples are usually obtained from
range cells close to the cell under test. The principle that underlies
this approach is that information about noise in the primary data can
be inferred from noise in the secondary data. This implies that the
two sets of data “share” some common features. The most widely
used assumption is that the noise is Gaussian distributed, and that
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M p = M s. In such a situation, M p can be estimated from the
sample covariance matrix of the secondary data, and then used in the
optimal detector; this is the essence of the adaptive matched filter
(AMF) [2]. A slight deviation to this ideal model is to assume that
M p is only proportional to M s; this is usually referred to as a par-
tially homogeneous environment. In this framework, the generalized
likelihood ratio test (GLRT) corresponds to the adaptive coherence
estimator, whose properties have been thoroughly studied [3].

However, it has been evidenced that the homogeneous assump-
tion is an idealized situation [4], and that the most commonly en-
countered situation is that of heterogeneous environments for which
M p �= M s. This can be due either to the terrain (highly complex
and non-stationary clutter environments) or the geometry of the ar-
ray (e.g. non-linear arrays or non side-looking configurations). Ob-
viously, a pre-requisite to estimate M p from the zk’s is to have
a model relating M p to M s. The most currently used approach
consists of writing the clutter covariance matrix, at each range, as
the integral -over clutter patches uniformly distributed in azimuth on
an iso-range curve- of the covariance matrix of each clutter patch,
weighted by the radar illumination pattern and the ground reflectiv-
ity [4, 5]. This model, if it allows one to compute the covariance
matrix for each range, does not yield a direct relation between M p

and M s. In addition, it does not enable one to simply model random
mismatches between M p and M s.

In this paper, we propose a new model for non homogeneous
environments. Towards this end, a Bayesian approach is advocated,
as it is a relevant framework to handle uncertainties, and, at the same
time, provides a theoretically sound way to define the relation be-
tween M p and M s. The present paper focuses on the estimation of
M p, using this new model. The estimates derived herein can in turn
be used for detection purposes, see [6].

2. PROBLEM STATEMENT

This section formulates the hypotheses regarding the data model pro-
posed for non homogeneous environments. As explained previously,
we have an observation vector z ∈ C

m×1, which consists of Gaus-
sian noise n and possibly a useful signal αs, i.e. z = αs+n, where
α = 0 or α �= 0. The covariance matrix of n is M p. Our problem
consists of estimating M p from the observation of K training sam-
ples zk, whose covariance matrix M s might differ from M p. We
assume that the vectors zk are independent and identically Gaussian
distributed, zk|M s ∼ CNm (0, M s), k = 1, · · · , K, where M s

is unknown. Since the zk’s are independent, the joint density of
Z =

ˆ
z1 · · · zK

˜
, conditionally to M s, is

f(Z |M s) = π−mK |M s|−K etr{−M−1
s S}, (1)
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where etr{.} stands for the exponential of the trace of the matrix be-

tween braces, and S =
PK

k=1 zkzH
k denotes the sample covariance

matrix of the secondary data. In order to model heterogeneity, we as-
sume that M p and M s are random, and that the distribution of M s

given M p is known. More precisely, we assume that the conditional
distribution of M s|M p is an inverse complex Wishart distribution
with ν > m degrees of freedom, whose mean is M p [7]:

f(M s|M p) ∝ |M s|−(ν+m) etr{−(ν − m)M−1
s M p}|M p|ν .

(2)
This distribution is denoted as M s|M p ∼ CW−1

m ((ν − m)M p, ν).
Note that the inverse complex Wishart distribution is the conjugate
prior for parameter M s, which will significantly simplify the analy-
sis. Note also that (2) implies that, “on the average”, the environment
is homogeneous as E {M s|M p} = M p; however, these two ma-
trices will be different with probability one. The parameter ν allows
one to adjust the degree of heterogeneity between M s and M p:
when ν increases, M s is closer to M p [7].

Let us now turn to the a priori distribution of M p. The choice
of this prior is of course a delicate issue. It is usually dictated by two
seemingly conflicting arguments. On one hand, the prior f(M p)
should reflect our knowledge about the primary data covariance ma-
trix, or our absence of knowledge, which can be recast through a
non informative prior. On the other hand, computational complexity
is an important issue. Consequently, the prior distribution of M p is
usually chosen in order to provide tractable posterior densities. We
refer the reader to [8] for a very comprehensive discussion about the
choice of a prior for covariance matrices. In our context, we assume
that we have some rough knowledge about the average value of M p,
denoted as M̄ p. The latter can be obtained, e.g. by using the model
for the clutter covariance matrix described in [4, 5]. Therefore the
prior distribution of M p is supposed to be a complex Wishart distri-
bution with μ ≥ m degrees of freedom and mean M̄ p [7], i.e.

f(M p) ∝ |M p|μ−m etr{−μM pM̄
−1
p }. (3)

This will be denoted as M p ∼ CWm

`
μ−1M̄ p, μ

´
. As μ increases,

M p is closer to M̄ p, and thus the prior density f(M p) is very infor-
mative. On the other hand, for small μ, M p may significantly depart
from M̄ p, which results in a vague prior density f(M p). Hence, the
scalar μ enables us to tune the amount of a priori knowledge we have
about M p. Furthermore, it should be stressed that M p will anyway
differ from M̄ p. The framework we propose thus enter the class of
knowledge-aided processing, which is recognized as one of the po-
tentially more effective way to handle heterogeneities [9]. On the
other hand, it includes rather heterogeneous environments.

3. ESTIMATION OF M p

We now focus on the problem of estimating M p from Z . As a pre-
liminary step, we obtain the posterior distribution f(M p|Z) which
is needed to derive both the MMSE and MAP estimators.

3.1. Posterior distribution of M p

Under the stated hypotheses, the joint distribution of (M p, M s),
conditionally to Z , is given by

f(M p, M s|Z) ∝ f(Z |M p, M s)f(M s|M p)f(M p)

∝ |M s|−(ν+m+K)|M p|ν+μ−m

× etr{−M−1
s [S + (ν − m)M p]}etr{−μM pM̄

−1
p }. (4)

Integrating (4) with respect to M s, and using (2)-(3), one obtains

f(M p|Z) =

Z
f(M p, M s|Z) dM s,

∝ |M p|ν+μ−m

|S + (ν − m)M p|ν+K
etr{−μM pM̄

−1
p },

∝ |M p|ν
|S + (ν − m)M p|ν+K

f(M p). (5)

The posterior distribution f(M p|Z) is now used to derive the MMSE
and MAP estimators.

3.2. MMSE estimation of M p

The MMSE estimate of M p is the mean of the posterior distribution,
vizZ

M pf(M p|Z) dM p =R |M p|ν |S + (ν − m)M p|−(ν+K)M pf(M p) dM pR |M p|ν |S + (ν − m)M p|−(ν+K)f(M p) dM p
. (6)

Unfortunately, no analytical expressions for the integrals in (6) exist,
and one must approximate them numerically. Deterministic meth-
ods are not appropriate here since these integrals involve functions
of high dimensions (M p is of size m × m). In such situation, it is
thus usual to resort to stochastic integration methods such as Markov
chain Monte Carlo (MCMC) methods. These methods consist of
generating samples distributed according to the posteriors of interest
-in this case f(M p|Z)- and to average these samples to approximate
the integrals to be computed. The interested reader is invited to con-
sult [10] for more details. However, the generation of matrices dis-
tributed according to f(M p|Z) is not straightforward, as (5) does
not belong to any familiar class of distributions. Instead, this paper

proposes to generate matrices M
(i)
p , M

(i)
s (for i = 1, . . . , Nr) dis-

tributed according to the joint distribution f(M p, M s|Z), using a
Gibbs sampling strategy. This recursive strategy has been described

in several textbooks such as [10]. Having the matrix M
(i)
s at the

i-th iteration, the generation of M
(i+1)
p and M

(i+1)
s is achieved as

follows:

• generate M
(i+1)
p according to f(M p|M (i)

s , Z),

• generate M
(i+1)
s according to f(M s|M (i+1)

p , Z).

Using (4), the conditional distributions of M p|M s, Z and M s|M p, Z
can be expressed as

M p|M s, Z ∼ CWm

„h
μM̄

−1
p + (ν − m)M−1

s

i−1

, ν + μ

«
,

(7)

M s|M p, Z ∼ CW−1
m (S + (ν − m)M p, ν + K) . (8)

Consequently, the Gibbs sampling strategy generates iteratively ran-
dom matrices M p and M s drawn from (7) and (8). The scheme is
repeated until convergence. Observe that generating matrices ac-
cording to Wishart or inverse Wishart distributions is straightfor-
ward. As is well known [10], the matrices (M p, M s) generated
with the previous algorithm are asymptotically distributed according
to f(M p, M s|Z). Therefore, the MMSE can be approximated by
averaging the “last” matrices generated by the Gibbs sampler. More
precisely, the Nbi first matrices belonging to the so-called burn-in
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period are not used for the estimation, yielding the following esti-
mateZ

M pf(M p|Z) dM p � 1

Nr

Nbi+NrX
i=Nbi+1

M (i)
p � cM MMSE

p , (9)

where Nr is the number of iterations used for the estimation of M p.

3.3. MAP estimation

We now turn to the MAP estimator, which can be obtained by maxi-
mizing f(M p|Z). Using (5), it follows that

ln f(M p|Z) = const. + (ν + μ − m) ln |M p|
− (ν + K) ln |S + (ν − m)M p| − Tr

n
μM pM̄

−1
p

o
. (10)

Differentiating the previous equation and equating the result to zero
yields

μ(ν − m)M pM̄
−1
p M p − (ν + μ − m)S

− M p

h
(ν − m)(μ − m − K)I − μM̄

−1
p S

i
= 0. (11)

The previous equation is a quadratic matrix equation, which can be
solved in closed-form, see [6]. More precisely, it can be shown that
the MAP estimate is given by

cM MAP

p = M̄
1/2
p Udiag (λk) UHM̄

1/2
p , (12)

where M̄
1/2
p stands for the Hermitian square-root of M̄ p, diag (λk)

is a diagonal matrix with diagonal entries λk, U is the matrix of the

eigenvectors of S̃ = M̄
−1/2
p SM̄

−1/2
p = Udiag (�k) UH , and

λk =

„
μ − m − K

2μ
− �k

2(ν − m)

«

+

s„
μ − m − K

2μ
− �k

2(ν − m)

«2

+
ν + μ − m

μ(ν − m)
�k. (13)

In contrast to the MMSE estimator, the MAP estimator can be ob-
tained directly, and is thus less computationally expensive.

4. NUMERICAL EXAMPLES

In this section we first study the convergence of the Gibbs sam-
pler. Then we compare the performances of the Bayesian estimators
(MAP and MMSE) to those obtained with the sample covariance ma-
trix (SCM) estimator. In all simulations, we consider an array with
m = 8 elements, and the average value of the nominal primary data
covariance matrix is M̄ p(k, �) = 0.9|k−�|. The number of training
samples is K = 2m = 16.

4.1. Convergence analysis

It is known that the Gibbs-sampler provides random matrices that are
asymptotically distributed according to the target distribution. How-
ever, a critical issue is to determine the numbers of iterations Nbi and
Nr (for burn-in and computation, respectively) that are sufficient to
have an accurate estimate of M p with (9). Usually, a two-step pro-
cedure is used. First, a rough idea of the values of Nbi and Nr is
obtained by evaluating the mean-square error (MSE) through the it-
erations. In a second step, more theoretically sound indicators, such

0 20 40 60 80 100
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1.008
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 Square root of potential scale factor

 Independent realizations

Nbi=20, Nr=100, M=20

Fig. 1. Potential scale factor. Nbi = 20, Nr = 100 and M = 20.
ν = m + 1, μ = m and K = 2m.

as the potential scale reduction factor [10], are used to confirm or
infirm the values selected in the first step. Such a procedure was
applied in our case -see [6] for details- showing that a short burn-in
period Nbi = 20 and Nr = 100 iterations were sufficient to ensure
a good estimation of M p. Once these values are chosen, a rigorous
way to assess convergence is to use the between-within variance cri-
terion. The principle is to run M parallel chains of length (Nbi, Nr),

with different initial values. Let M
(i,j)
p be the matrix obtained at the

i-th iteration of the j-th chain and let us note

cM (.,j)

p = N−1
r

Nbi+NrX
i=Nbi+1

M (i,j)
p , (14)

fM p = M−1
MX

j=1

cM (.,j)

p , (15)

where cM (.,j)

p corresponds to the MMSE estimate for the j-th chain,

and fM p is the average value over the M chains. The between-
sequence and within-sequence variances for the M Markov chains
corresponding to the (p, q) element of M p ( denoted as Bpq and
Wpq respectively), are defined by

Bpq =
Nr

M − 1

MX
j=1

([cM (.,j)

p ]pq − [M̃ p]pq)
2, (16)

Wpq =
1

M

MX
j=1

1

Nr − 1

Nbi+NrX
i=Nbi+1

([M (i,j)
p ]pq − [cM (.,j)

p ]pq)
2.

(17)

The convergence of the Gibbs sampler can be monitored by the so-
called potential scale factor ρpq defined as [10]

ρpq =
Nr − 1

Nr
+

1

Nr

Bpq

Wpq
. (18)

A value of
√

ρpq less than 1.2 is recommended for convergence as-
sessment in [10]. Figure 1 displays the value of

√
ρ11 when Nbi =
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20, Nr = 100 and M = 20. The experiment was run a hundred
times and the values of

√
ρ11 are plotted for these 100 independent

realizations. It is clearly seen that these values of Nbi and Nr ensure
convergence of the Gibbs-sampler, which validates our selection.

4.2. Estimation performance

This section compares the performance of the MMSE, MAP and
SCM estimators. Note that the SCM estimator K−1S is used for
estimating M p in homogeneous environments. Figures 2 and 3 dis-
play the MSEs obtained with the three estimation strategies versus
μ, for two different values of ν, namely ν = m + 1 and ν = 2m.
Note that, as ν increases, the environment is more homogeneous.
Accordingly, when μ increases, the a priori knowledge about M̄ p is
more important. From inspection of these figures, it can be seen that
the MMSE estimator always provides the best performance. The
improvement compared to the MAP estimator is about 4 − 6dB:
it does not really depend on ν and it slightly decreases as μ in-
creases. The improvement compared to the SCM estimator is about
6 − 8dB when ν = 2m and 14 − 18dB when ν = m + 1, which is
quite significant. The difference between the MMSE and the SCM
is more pronounced when the environment is more heterogeneous,
as could be expected. In fact, the performance of the SCM-based
estimator degrades significantly as the environment becomes more
heterogeneous, i.e. as ν decreases. In contrast, the performance of
the MMSE estimator remains approximately constant when ν varies,
which means that it can accommodate quite heterogeneous environ-
ments. Also, the MSE of the MMSE estimator decreases when μ in-
creases, which is a direct consequence of the priori knowledge about
M̄ p being more pronounced. The performance of the SCM-based
estimator is seen to depend weakly on μ.
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Fig. 2. MSE for estimation of M p versus μ. ν = m + 1

5. CONCLUSIONS

In this paper, a Bayesian framework was proposed to handle the
case of heterogeneous environments, for which there exists a mis-
match between the covariance matrix of the primary data and that of
the training samples used for adaptation. A flexible model was pre-
sented where both the importance of the a priori knowledge and the
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 d
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Fig. 3. MSE for estimation of M p versus μ. ν = 2m

degree of heterogeneity can be set through scalar variables. Within
this framework, the MMSE and MAP estimators of the primary data
covariance matrix using training samples were derived. A Gibbs
sampling strategy was presented to implement the MMSE estima-
tor. The latter estimator enables one to significantly improve perfor-
mance compared to the usual sample covariance matrix estimator,
and was also shown to outperform the MAP estimator.
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