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ABSTRACT

In this paper, a new parametric method for time delay estimation
is proposed. The method, classified under the generalized cross-
correlation (GCC) approach, uses a couple of identical FIR filters
to process the data from each sensor. A set of filters is designed to
maximize the output cross-correlation at each lag. The lag associated
with the maximum of all filtered cross-correlation is the estimate of
the time delay,and its associated FIR filter is the optimum proces-
sor. The proposed method is implemented in the time domain and
does not need spectral information as for the classical GCC meth-
ods. Its implementation uses eigen-decomposition algorithms and
requires one input parameter which is the order of the FIR filter. It
is equivalent to applying a data-driven bandpass filter to the cross-
correlogram to emphasis the source signal. The proposed method
is compared with standard methods in a simulation study. Simula-
tion results show very good performance for the case of short data
records and at low to moderate SNR levels.

Index Terms— Time delay estimation, Generalized cross cor-
relation.

1. INTRODUCTION

The problem of measuring the time delay between noisy signals re-
ceived at two or more remote sensors has diverse applications in ar-
eas such as sonar, acoustics, geophysics, and biomedical engineer-
ing. Specifically, let the two received signals be:

x1(n) = s(n) + ε1(n)

x2(n) = αs(n−D) + ε2(n). (1)

The source signal s(n) and the corrupting noise ε1(n) and ε2(n) are
assumed jointly uncorrelated. D is the time delay between the re-
ceived signals and α is an unknown attenuation factor. The problem
here is to estimateD based on the measurements {x1(n), x2(n)} , n =
0, 1, . . . , N − 1, and without any a priori knowledge of the source
signal.
Many of the methods developed for time delay estimation (TDE)
are related through the generalized cross correlation (GCC) method.
In this approach, the estimated cross correlation sequence of the re-
ceived signals is convolved with a weighting filter. The time lag for
which the filtered cross-correlogram is maximized is the time delay
estimate. Optimal weighting filters include the maximum likelihood
(ML) estimator originally proposed by Hanann and Thomson [1].
Knap and Carter [2], in a comparative analysis with other estima-
tors, derived the same filter and showed that it is equivalent to ap-
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plying two prefilters on each of the signals in (1) followed by cross-
correlation.
It is difficult to design the true optimal weighting filter since exact
knowledge of source and noise spectra are needed. In practice, this
is usually done using the non-parametric spectral estimation method
of Welch’s modified periodogram [3]. Comparative simulation stud-
ies have shown that the degradation in TDE performance due to filter
estimation error can be sufficiently large to preclude the use of GCC
technique and favour the standard (unfiltered) cross-correlogram [4],
[5].
To avoid spectral estimation, an alternative approach called time de-
lay parameter estimation (TDPE) is proposed in [6]. This approach
models the delay between the two signals by a finite impulse re-
sponse (FIR) filter in one of the signals as input, say for example
x1(n). The weights of the filter are adaptively adjusted to minimize
the mean-squares difference between x2(n) and the output of the fil-
ter. The filter tap number corresponding to the maximum absolute
weight is the TDPE delay estimate.
TDPE is very attractive in estimating non-stationary time delay and
is implemented in the time domain. However, care should be paid in
the choice of the filter length p, which should be such that p > |D|.
In the case of large D, or when exact knowledge on the bound of
D is not available, p is to be chosen relatively large. This will in-
crease the variance of the estimated FIR filter’s parameters and a
difficult convergence monitoring of the LMS algorithm is needed.
This makes estimation of the time delay less accurate and difficult.
In this paper, we propose a new method for time delay estimation
that can be classified under the GCC approach. A parametric model
is used instead of a non-parametric one to determine the appropriate
prefilters. The two prefilters, supposed identical without loss of gen-
erality, are modeled as FIR filters. A set of FIR filters is designed
to maximize the output of the generalized cross-correlator at each
lag. The lag corresponding to the maximum of all maximized gen-
eralized cross-correlation outputs is then chosen as the estimate of
the time delay and its associated FIR filter is the optimum prefilter.
We present theoretical arguments supported by empirical results that
the new method, named parametric generalized cross-correlation
(PGCC), is approximately equivalent to a bandpass weighting filter
whose center frequency is around the peak of the source spectrum
and whose bandwidth is determined by the filter length.

2. GENERALIZED CROSS-CORRELATION

In the GCC approach, the sensor outputs in (1) with cross-spectra
Gx1x2

, are respectively prefiltered using two real causal filters f1(n)
and f2(n) such as:

yi(n) =

∞X
k=0

fi(k)xi(n− k), i = 1, 2. (2)
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The cross-spectrum of y1(n) and y2(n) is computed as:

Gy1y2
(ω) = F1(ω)F

∗

2 (ω)Gx1x2
(ω), (3)

where ∗ denote the complex conjugate. The GCC function is then
obtained by taking the inverse Fourier transform (IFT) of (3), i.e,

ry1y2
(τ ;W ) =

1

2π

Z π

−π

W (ω)Gx1x2
(ω)ejωτdω, (4)

where W (ω) = F1(ω)F
∗

2 (ω). The GCC approach can be alter-
natively viewed as applying a window function to the cross-power
spectrum before computing the IFT. The argument τ that maximizes
ry1y2

(τ ;W ) is then the desired estimate of the time delayD.
Time delay estimation under the GCC approach aims to design an
appropriate weighting filter W (ω). In practice, W is real valued,
therefore F1 and F2 have the same phase. WhenW (ω) = 1, GCC
reduces to the standard cross correlation (SCC) method.

3. PROPOSEDMETHOD

Without loss of generality, we will assume that F1=F2=Hp. Where
Hp is an FIR causal filter of order p such that

Hp(ω) =

pX
n=0

hp(n)e
−jωn. (5)

Define hp =
`
hp(0), hp(1), . . . , hp(p)

´t
, where (.)t denotes trans-

pose. The cross-correlation between the filter’s outputs y1(n) and
y2(n) at lag τ is given by:

ry1y2
(τ ;hp) = E

n
y1(n)y2(n+ τ )

o

=

pX
k=0

pX
m=0

hp(k)hp(m)E
n
x1(n−k)x2(n+τ−m)

o

=

pX
k=0

pX
m=0

hp(k)hp(m)rx1x2
(τ + k −m)

= h
t
pRp(τ )hp. (6)

Rp(τ ) is a square matrix of dimension (p+1)whose (k,m) entry is
rx1x2

(τ + k−m). The objective is to find the real filter hp(τ ), that
maximizes the cross-correlation of y1(n) and y2(n) at lag τ . Be-
cause ry1y2

(τ,hp) can be increased arbitrary by simply multiplying
hp by a constant, we restricthp to be of unit norm, that isht

php = 1.
Hence the maximization problem becomes

maximize |ht
pRp(τ )hp| such that ||hp||2=1 and hp∈R

r (7)

Proposition 1: Define the matrix eRp(τ ) =
`
Rp(τ ) + R

t
p(τ )

´
/2.

The solution to (7) is:

hp(τ ) = v
(1)
p (λ) and ry1y2

(τ ;hp(τ )) = λ(1)
p (τ ),

where v
(1)
p (τ ) is the eigenvector of eRp(τ ) associated with the eigen-

value λ(1)
p (τ ). The eigenvalues of eRp(τ ) are sorted such as

|λ(1)
p (τ )| ≥ |λ(2)

p (τ )| ≥ . . . ≥ |λ(p+1)
p (τ )|.

Proof: The solution to the problem

maximize |xt
Rx| such as ||x||2 = 1 and x ∈ R

r,
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Fig. 1: Source signal (a) and amplitude spectrum (b).

where R is an r × r matrix, requires an eigenvalue decomposition
of the matrix R. The solution x corresponds to the eigenvector of R
associated with the eigenvalue having the maximum absolute value
[7]. The matrix R is not necessarily symmetric, and since x ∈ R

r, it
is required to involve a symmetric matrix in the eigen-decomposition
to obtain a feasible solutions. Recall that

x
t(Rx) = (Rx)tx = x

t
R

t
x.

The cost function can be rewritten as

x
t eRx, where eR =

`
R + R

t
´
/2.

eR is a symmetric matrix and has real eigenvectors. The solution x

corresponds to the eigenvector of eR associated with the eigenvalue
which has the maximum absolute value �.
The PGCC method determines the time delay estimate such that

D̂ = argmax |λ(1)
p (τ )|. (8)

τ

The optimal FIR filter has an impulse response determined by the
vector hp(D̂). The only input parameter for the PGCC method is
the filter order p. We note that for p = 0, PGCC reduces to the SCC.

4. SIMULATION

We consider the two-sensors modelof (1). We investigate a typi-
cal situation, encountered in many applications, in which only short
data records are available. So, we use a data sample size N = 128
and we set the time delay parameter to 10 samples. The time delay is
assumed to be an integer multiple of sampling period. A parabolic fit
to the peak of the generalized cross-correlogram may be performed
for fine estimation of TDE, but we will not consider this option in
our simulations.
The source signal s(n) [Fig.1(a)] has a narrowband spectrum [Fig.1(b)]
contrary to active time delay estimation, like in radar for example,
where broad band source are common. Two independent white zero-
mean Gaussian random sequences, with identical variance σ2

n, are
generated to construct the noise signals ε1(n) and ε2(n). The vari-
ance of the noise generator is adjusted to have the desired SNR level
of 10 log10(σ

2
s/σ

2
n), where σ2

s =
PN−1

n=0 s
2(n)/N .

We compare the performance of the proposed method with the stan-
dard cross-correlation (SCC) method and the maximum likelihood
estimator (ML) [2]. For the ML method, the cross-spectra and the
coherence function [8] are estimated by partitioning the data into
four segments of 64 point each (50% overlap). Each segment is mul-
tiplied by a Hanning window to reduce frequency leakage. For the
PGCCmethod, a filter order of p = 10 is used. In all the simulations
we search for the time delay D in the interval [-20,20].
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A performance measure of each TDE method is the empirical dis-
tribution (histogram) of the selected time delay D̂. We run a Monte
Carlo simulation that consists of 1000 trials using SNR = -3 dB. Re-
sults are shown in Fig(2). PGCC achieves the highest percentage of
correct selection [Fig.2(a)], followed by SCC [Fig.2(b)] and thenML
[Fig.2(c)]. The PGCC distribution of D̂ shows shorter tails, as com-
pared with the other methods, and has the lowest variance. This may
be an interesting feature for robust detection. On the other hand, ML
achieves the lowest performance, mainly because of the poor spec-
tral estimation at the SNR level due to the short data records.
To investigate the effect of the noise level, we repeat the same Monte
Carlo simulation for different values of SNR. The probability of cor-
rect selection achieved by the three methods is shown in Fig. 3. For
very low SNR, all the methods have identical performances. The
same thing happens at high SNR, where PGCC and SCC have iden-
tical results starting from 5 dB. ML reaches the two other methods
at higher SNR level. PGCC outperforms the other methods for low
and moderate SNR. For an SNR level ranging in [-5,0] dB, PGCC
achieves a performance equivalent to an average increase of 1.25 dB
in the SNR with respect to SCC and 2.5 dB with respect to ML. Sim-
ilar results are obtained if we examine the bias and variance of the
estimator D̂ for each method (figures not shown).

5. DISCUSSION

5.1. Interpretation of PGCC

In this section, we present both theoretical and empirical arguments
to explain the filtering effect of PGCC. From equation (4), and using
the symmetry of the problem, it is straightforward to show that for
real signals x1(n) and x2(n), we have

ry1y2
(τ,W )=

1

π

Z π

0

W (ω)|Gx1x2
(ω)|cosˆφ(ω)+ωτ˜dω, (9)

where φ(ω) is the phase of the cross-spectrum Gx1x2
(ω). For ease

of notation, let Bτ (ω) = |Gx1x2
(ω)| cos ˆφ(ω) + ωτ

˜
. The main

idea of this work is to design Wτ (ω) over [0, π] that maximizes
|ry1y2

(τ,W )|.
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Fig. 2: Histogram of the estimated time delay. (a) SCC, (b) ML, (c) PGCC
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Fig. 3: Percentage of correct selection. (−) PGCC, (−−) SCC, (−.−)ML

Proposition 2: Let ωτ ∈ [0, π] such thatKτ = |B(ωτ )| ≥ |B(ω)|.
The weighting function satisfying :(i)W (ω) ≥ 0, (ii) 1/π

R π

0
W (ω)dω =

1 which maximizes |ry1y2
(τ,W )| is given by1

Wτ (ω) = πδ(ω − ωτ ), (10)

where δ(.) is the Kronecker function.
proof: A direct substitution of (10) in (9) gives

|ry1y2
(τ,Wτ )| = π|B(ωτ )| = πKτ .

Using the triangule inequality, one can show that

|ry1y2
(τ,W )| ≤ 1

π

Z π

0

W (ω)dω

Z π

0

|B(ω)|dω
≤ πKτ = |ry1y2

(τ,Wτ )|.

The global maximizer of (9) over a range of τ isWD̂(ω), where D̂
is the time delay estimate using the class of generalized functions as
weighting filters.�
This filter corresponds to a single cosine oscillating at frequency ωD̂ .
It is non-causal and has an infinite impulse response. However in this
paper, we proposed to choose the weighting filter W (ω) from the
class of FIR filters obtained by convolving a causal FIR filter of order
p with its time reversal. Let us denote this causal FIR filter of order
p by qp(n) and its Fourier transform (FT) byQp(ω). Let also Up(ω)
be the FT of a rectangular window up(n) over 0 ≤ n ≤ p. Up(ω) is
a lowpass filter with a passband of 2π/p. If we approximate qp(n)
by truncation, the filter whose square Q2

p best approximates WD̂

defined in equation (10), in the mean-square sense is [9]

Qp(ω) =
√
πδ(ω − ωD̂) ∗ Up(ω) =

√
πUp(ω − ωD̂).

Hence Qp(ω) is a bandpass filter with peak frequency at ωD̂ and
bandwidth of 4π/p. Combining the results of proposition 1 and 2,
we can so far argue that Qp approximate the filter Hp of the PGCC
method.2 To investigate this point, we use the same data simulated
in section 4 to plot the normalized |Hp(ω)|, defined in Proposition
1, for different values of p. The normalized source spectrum |S(ω)|
is also plotted in superposition [Fig. 4]. We notice that the peak fre-
quency of Hp(ω) is very close to the peak frequency of the source’s
spectrum. The larger the value of p, the narrower |Hp(ω)| is.
Broadly speaking, based on the above arguments we can say the that
PGCC method bandpass filters the cross-correlogram with an FIR-
based estimate of the source spectrum.

1In here, ωτ is assumed unique over the interval [0,π] to ensure the
uniqueness of the solution in (10).

2The approximation is better for the limiting case of large p.
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Fig. 4: Normalized spectra, (−) |Hp(ω)|, (−−) |S(ω)|. (a) p = 4, (b)
p = 10, (c) p = 20.

5.2. Selection of Filter Order p

In the PGCC method, the only parameter left to the user’s choice
is the filter order p. It has been argued in the preceding subsection
that this choice depends mainly on the bandwidth of the source sig-
nal. The narrower the bandwidth, the larger the order that should
be used. However, in practice we may not have reliable knowledge
about the source bandwidth. Therefore, the user needs to investigate
several values of p. This may be found helpful to give an idea about
the robustness of D̂p vis-a-vis p and a rough estimate of the source
bandwidth.
Let’s assume a uniform a priori probability forD over [Dmin,Dmax].
The a posteriori probability distribution ofD is then proportional to
the likelihood, which was approximated in the derivation of the ML
estimator [2]. Adopting this result, we can claim an approximation
to the a posteriori probability that the time delay is equal to τ , when
using a weighting function hp(D̂p), that is given by

P(τ, p) =
1

C(p,τ)

exp
n
−

˛̨
ry1y2

ˆ
τ ;hp(D̂p)

˜˛̨o
, (11)

where C(p,τ) is the normalizing factor given by

C(p,τ) =

DmaxX
τ=Dmin

exp
n
− ˛̨
ry1y2

ˆ
τ ;hp(D̂p)

˜˛̨o

An image plot of (11), using for each p ∈ [0, 20], a single realiza-
tion from a simulation experience identical to the one performed in
section 4, is shown in Fig. 5. It seems that the value of p does not
affect the selection of D̂, being equal to -10, for a wide range of p
(p ≥ 2). This provides an excellent robustness property with re-
spect to a reliable choice of p, though care should be taken not to
use very large values of p, which may result in an oscillating filtered
cross-correlogram and causes peak ambiguity and therefore a false
detection. As a rule of thumb, the bandwidth of a filter of order p
is 4π/p. The source signal used in the simulation [Fig. 1(b)] has a
bandwidth of about 0.5π. Hence, the best filter to use would be of
order p = 4/0.5 = 8. This finding is confirmed in Fig.5, where
the maximum a posteriori probability points toward a filter order of
p = 8.

p

τ
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6. CONCLUSION

Time delay estimation for short data records or narrow-band signals
is a challenging problem. In this paper, we propose a new parametric
method tailored to solve such problem. The method is classified un-
der the generalized cross-correlation approach, but does not require
knowledge of source and noise spectra. An adaptive FIR filter maxi-
mizes the output cross-correlation at each lag. Effectively, it applies
a band-pass filter to the cross-correlogram to emphasis the source
signal. The filter order is the only control parameter, however results
are robust to its choice. Generally speaking, the narrower the source
spectrum, the larger the filter order should be. As compared with
standard techniques, the new method performs well for low to mod-
erate SNR ratios. Online extension of this method is straightforward
by block data processing.

7. REFERENCES

[1] E.J. Hannan and P.J. Thomson, “Estimating group delay,”
Biometrika, vol. 60, pp. 241–253, 1973.

[2] C.H. Knap and G.C. Carter, “The generalized crorrelation
method for estimation of time delay,” IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 24, pp. 320–327,
August 1976.

[3] P. D. Welch, “The use of FFT for estimation of power spectra:
A method based on time averaging over short, modified peri-
odogram,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 15, pp. 70–73, Augest 1967.

[4] K. Scarbrough, N. Ahmed, and G.C. Carter, “On the simulation
of a class of time delay estimation algorithms,” IEEE Transac-
tions on Acoustics, Speech and Signal Processing, vol. 29, pp.
534–540, June 1981.

[5] J.C. Hassab and R.E. Boucher, “A quantitative study of optimum
and sub-optimum filters in the generaized correlator,” in Inter-
national Conference on Acoustics, Speech, Signal Processing.
ICASSP, 1979, vol. I, pp. 124–127.

[6] Y.T. Chan, J.M. Riley, and J.B. Plant, “A parameter estimation
approach to time-delay estimation and signal detection,” IEEE
Transactions on Acoustics, Speech and Signal Processing, vol.
28, pp. 8–16, February 1980.

[7] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns
Hopkins University Press, 1996.

[8] G. C. Carter, C. H. Knap, and A. H. Nuttall, “Estimation of
the magnitude-squared coherence function via overlapped fast
fourier transform processing,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 21, pp. 337–344, Augest
1973.

[9] I. M. Gelfand and G. E. Shilov, Generalized functions Vol. 1:
Properties and operators, Academic Press, 1964.

III ­ 1036


