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Abstract

The true Cramer-Rao lower bound (CRB) for the time delay 
estimation has been obtained for narrowband signal with the 
carrier phase as a deterministic parameter already. However, 
the carrier phase is usually a random parameter in non-
coherent receiver in the applications such as radar, sonar 
and communication systems. And accuracy of the time 
delay estimation will be affected by this nuisance carrier 
phase. In this paper, the true Cramer-Rao lower bound for 
the time delay estimation is derived and analyzed in the 
presence of a random carrier phase. The new bound is 
tighter than the one obtained under the condition that the 
carrier phase is not random. We show that this relation 
indicates the influence of the random carrier phase on the 
true CRB, and the penalty resulting from this random carrier 
phase increases severely with decreasing signal-to-noise 
ratio. The explanation about this influence is also given 
from the point of information theory. Simulations are 
provided to support the theoretical results. 

Index Terms— Cramer-Rao lower bound (CRB), time 
delay estimation 

1. Introduction

The problem of the time delay estimation (TDE) is one of 
fundamental importance in radar, sonar and communication 
systems. It’s necessary to know the ultimate accuracy of 
TDE theoretically. The Cramer-Rao lower bound is one of 
the most fundamental limits on the minimum achievable 
variances of any unbiased estimates of deterministic 
parameters [1, 2]. Unfortunately, the received signal usually 
depends on other unwanted or nuisance parameters which 
are of no interest, and serve only to perturb the estimation of 
the desired parameters. 

When the observation depends on nuisance parameters, 
the computation of the true CRB requires the determination 
of marginal probability density function (pdf), an operation 

that is generally very hard to perform analytically. For this 
reason, other bounds have been proposed, namely, the 
modified CRB (MCRB) [3, 4].  Although easier to obtained, 
the MCRB is generally looser than the true CRB. Another 
way to obviate the analytical difficulties associated with the 
computation of the true CRB is evaluation of high SNR 
limits of this bound [2, 5]. 

As far as the time delay estimation is concerned in the 
presence of the carrier phase, there are three scenarios about 
the nuisance carrier phase: 

1) the carrier phase is known as prior information, 
2) the carrier phase is a unknown parameter, and 
3) the carrier phase is a random valuable. 

The CRBs of TDE for 1) and 2) have been studied for 
several decades [1-2, 5]. The CRB for TDE under the high 
signal-to-noise ratio (SNR) was presented in [5] for the 
third scenario. Although Noels and Tavres et al. have 
derived the CRB for TDE in the presence of the random 
carrier phase [6, 7], their results were just suitable for the 
linearly modulated waveforms. Inspired by the work in [7], 
we extended their work for all narrowband signals in radar, 
sonar and communication systems in this paper, obtained a 
relatively simply analytical expression of the true CRB of 
TDE in the presence of a random phase. We also compared 
this new bound with other scenarios. Further explanations 
and conclusions are also given. 

2. Signal Model and Problem Formulation 

Consider a source signal over an additive white Gaussian 
noise channel with unknown time delay in the presence of a 
random carrier phase. Let assume that ( )s t  is the source 
signal, which is narrowband. The complex analytical 
representation of the received signal may be modeled as 

( ) ( ) ( )jr t as t e w t                           (1) 
where  is a real attenuation constant, a  is a random carrier 
phase.  denotes the time delay.  is the ergodic, zero-
mean , complex white Gaussian noise with variance 

w

( )w t
2 , and 

with independent real and imaginary part, each with 
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variance , and 2 2 / 2w
2/s wSNR E , where 

sE  is the 
energy of the received signal (without noise) 

22 ( )sE a s t dt                            (2) 

Suppose one is able to produce from the received signal 
 an unbiased estimate r ˆ  of , then the estimation error 

variance satisfies ˆvar{ } ( )CRB  with [1]: 
12

ˆ

ˆln ( ; )( )
ˆ

pCRB Er
r             (3) 

where ˆln ( ; )p r  is the log-likelihood function. The 
expectation  in (3) is with respect to {}Er ˆ( ; )p r . Here the 
observation  depends not only on the r  to be estimated 
but also on a nuisance parameter , the ˆ( ; )p r  is obtained 
by averaging ˆ( | ; )p r  of the vector ( , )  over the a priori 
distribution ( )p  of the nuisance parameter: 

ˆ ˆ( ; ) ( | ; ) ( )p p p dr r                 (4) 

With this signal model, the joint likelihood function 
ˆ( | ; )p r  based on r  , without a factor not dependent on  ˆ ,

is given by 

2

2ˆ ˆ( | ; ) exp ( )j

w

p e ur            (5) 

where  and  stand for real and imaginary part of a 
complex-valued function, respectively, and 

{} {}
ˆ( )u  is

*ˆ ˆ( ) ( ) ( )u ar t s t dt                  (6) 

where “*” denotes the complex conjugation. The carrier 
phase without prior information is often assumed to have a 
uniform pdf in ( , ) . Then the marginal likelihood for the 
estimation of  is obtained as from (5) 

02 2

1 2 2ˆ ˆ ˆ( ; ) exp ( ) ( )
2

j

w w

p e u d I ur  (7) 

where ( )nI z  is the modified Bessel function of the first kind 
and order n. In next section, the bound (3) is computed from 
the log-likelihood function ˆln ( ; )p r .

3. True CRB for TDE with Random Carrier Phase

3.1. Derivation 

Before deriving CRB of the time delay, we first define some 
symbols which will be used later: 

2
*( ) ( )

s

a s t s t dt
E

                     (8) 

2
22 ( )

s

a
s t dt

E
                           (9) 

where ( ) ( ) /s t ds t dt , and 2 2

Taking partial derivations and using the identity 

0

2 .These symbols 
have been defined already [2], but we do not expatiate here. 

1( ) ( )I z z I z , yield: 
*

2
ˆ ˆ

ˆln ( ; ) 1 ( )( )
ˆ ˆ( )

p I u
u

u
r     (10) 

where

1 02 2
1 1( ) ( )I I u I u                (11) 

From (1) and (6), we can get 
2 *

*

( ) [ ( ) ( )

             ( ) ( ) ]

       ( )

j

j

j
s

u e a s t s t dt

aw t s t e dt

e E v

                     (12) 

2 *

ˆ

*

1

ˆ( ) [ ( ) ( )
ˆ

                    ( ) ( ) ]

              ( )

j

j

j

u e a s t s t

aw t s t e dt

e A v

dt

dt

dt

            (13) 

where
*( ) ( ) jv aw t s t e                           (14) 

2 *( ) ( )A a s t s t                        (15) 

*
1 ( ) ( ) jv aw t s t e dt                         (16) 

Note that, the multiplication by the complex exponential 
je  does not modified the statistical properties of the noise 

processes, so we may consider the processes in the previous 
definitions of  and  as the original noise process .v 1

Using (10-16), (3) becomes 
v ( )w t

1

1
2

* 2
124

1( ) {( {( )( ) }) | }v v s
s

ICRB E E E v A v v
E v

(17)
The result of the derivation of the conditional expectation 

in (17) is given by in [7, eq. (I.13)] 
12

2 2

1 { }( ) ( ) ( )
2

s

s

EACRB B F
E

             (18) 

where
2 *( ) ( )B a s t s t dt                         (19) 

 and the function is defined as 

2

2 2
1 0

2
1

0
0

( ) { (2 ) (2 )}

2
        2

2
x x

F x E I x I x

I x
xe e d

I x

               (20) 

From (8-9), (15) and (19), the relations are shown 
2

sB E , { } sA E                        (21) 
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Plugging 2/s wSNR E , and (21) into (18) gives the desired 
CRB for the time delay estimation as 

2

1 1( )
2 ( )

CRB
SNR F SNR

1               (22) 

It is worth noting that this new bound extends previous 
work by Tavres [7] that considers the true CRB for linearly 
modulated signal only. This new CRB pertains not only to 
linearly modulated waveforms, but also to all other 
narrowband signals. For a linearly modulated waveform,  

1

0

( ) ( )
K

k
k

s t a h t kT

{ }Ka

                  (23) 

where 0k k
1 a  is a sequence of K symbols from an 

arbitrary M-ary constellation, T  is the symbol duration, and 
 is a real-valued square-root Nyquist pulse with the 

energy
( )h t

sE , the CRB in (22) becomes 
1

2

2 2

{ }( ) 2
H

Hs s

w w

E E
CRB F K

K
a Gaa Ga   (24) 

where  and  are  matrices with entries G G K K
[ ] [( ) ]ij g i j TG , , and [ ] [( ) ] : , 0, , 1ij g i j T i j KG

( ) ( ) ( )g t p t p t . And ( )g t  and ( )g t  are the first and 
second derivates of this pulse. This bound (24) is consist 
with the true CRB in [7, eq. (8)]. 

3.2. Asymptotic Behavior 

Here, the nature of the bound (22) is investigated. Since 
x SNR , it suffices to find asymptotic approximations for 

( )F x  as . Without going the details, we state a number 
of useful properties of  which may be proved using 
standard analysis techniques: 0 (

0x
( )F x

)F x 1 and for all ,0x
( ) (1 )F x x x .
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Fig.1 Function  and the corresponding approximation ( )F x

The function  is plotted in Fig.1, together with the 
corresponding approximation for all , which is more 

meaningful and simple than the approximations at low and 
high SNR in [7], respectively. From the approximation of 

, we may write for (22) the asymptotic expression 
shown as 

( )F x
0x

( )F x

2 2

1( )
2

SNRCRB
SNR

1 ,   for all        (25) SNR

This asymptotic expression in (25) is more practical and 
advisable, because the effect of the SNR can be derived 
easily from (25).  

3.3. Relations between CRBs 

Let us now compare the new bound in (22) to the results of 
the other scenarios, as described in the Introduction. The 
CRBs of time delay estimation for the first and second 
scenarios was discussed in [1-2, 6]:

1 2

1 1( )
2

CRB
SNR

                               (26) 

2 2

1 1( )
2

CRB
SNR

                              (27) 

From above results, we can find that 

2 2 2 2

1 1 1
( )F SNR 2

1              (28) 

Hence
3 2( ) ( ) ( )CRB CRB CRB 1                 (29) 

where 1( )CRB , 2( )CRB  and 3( )CRB  denote the CRBs for 
the three scenarios in the Introduction, respectively. 
Obviously, these relations indicate the influence of the 
random carrier phase on the true Cramer-Rao lower bound, 
and the penalty resulting from the random carrier phase, 
increases severely with decreasing SNR. 

In fact, the above relations are not occasional. In 
statistical sense, knowing the information of the other things 
can reduce the uncertainty of itself. This is well-known 
theorem in information theory: conditioning reduces 
entropy [8]. So in our problem, with the decreasing of the 
obtained information about the unwanted carrier phase, the 
estimate variance should increase at the same time. 

4. Numerical Results and Discussions

All numerical results reported in this section were obtained 
considering the narrowband signal given by: 

24 1
2( ) exp{ }c

21
2s t t j t j t                 (30) 

where 1c
, 1 .we can get 2 21/ 2 / 2c

2  and 
c
. For simplicity, we set 0 . The measurement time 

is 5 t 5  and the sampling rate is 0.1.  
The true CRBs of the time delay estimation from the 

three scenarios about the carrier phase are plotted in Fig. 2 
as a function of SNR. It is seen that, the new bound in (22) 
has the largest variance of the time delay estimation, 
because the third scenario with a random carrier phase has 
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the least information about the carrier phase among these 
three scenarios. Furthermore, the penalty resulting from the 
random carrier phase increases severely with deceasing 
SNR. And this phenomenon is considerable in practice. 
Because the generalized use of channel coding and weak 
signal detection pushes system operation toward low SNR.  
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Fig. 2 True CRBs of TDE for the three scenarios:
(1) denotes known phase; (2) denotes unknown phase; and

(3) denotes random phase 

A comparison of actual variance of time delay estimator 
with the new bound will be presented. Because the 
maximum likelihood (ML) estimator can attain the CRB 
asymptotically, we use them to validate the new CRB in our 
simulation. From (7), the ML estimates are obtained as 

0 2

2ˆ arg max ( )ML
w

I u                       (31) 
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Fig.3 Variance of estimate and corresponding CRB
with the random carrier phase 

The simulated variance of estimates in (31) is shown in 
Fig. 3. As the SNR increases, the observation data lead to 

estimate with variance that approaches the corresponding 
lower bound. With decreasing SNR, the variance of 
estimate approaches the threshold, which is the variance of 
the priori information of time delay determined. We 
conclude that the performance of ML estimate is very close 
to the corresponding theoretical limit.

5. Conclusion

In this paper, we have derived the true CRB for time delay 
estimation of a narrowband signal with a random carrier 
phase. The new bound is tighter than the ones obtained 
under the assumption that the carrier phase is a known or 
unknown parameter. The penalty resulting from the random 
carrier phase increases severely with decreasing SNR. We 
have given an explanation about the influence from the 
viewpoint of information theory. Comparison between the 
performance of the ML estimator and the new bound shows 
that this bound is attainable by a practical estimator.  
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