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ABSTRACT
Estimation of the autoregressive (AR) parameters of an
AR process often involves applying Yule-Walker (YW)
equations to the estimated correlations. When the pro-
cess is Gaussian, the resulting estimate is asymptoti-
cally optimal, coinciding with the Maximum-Likelihood
(ML) estimate. However, for non-Gaussian processes,
applying the YW equations to the estimated correla-
tions may be significantly sub-optimal, whereas compu-
tation of the exact ML estimate may be prohibitively
cumbersome. In this paper we show how the YW equa-
tions may be applied to an alternative statistic, namely
to off-origin Hessians of the second characteristic func-
tion. Although still not optimal, we show in simulation
that the resulting estimate can significantly outperform
the classical correlation-based estimate, as well as a
cumulants-based estimate.

Index Terms— autoregressive, Yule-Walker, char-
acteristic function, Hessian, charrelation matrix.

1. INTRODUCTION

Estimation of the autoregressive (AR) parameters of
an observed AR process is a fundamental problem in
time-series analysis, with diverse applications, such as
spectral estimation, blind channel identification, signal
detection, adaptive filtering, speech analysis, speech
coding and many more. A classical tools for this es-
timation problem are the Yule-Walker equations (e.g.,
[6]), which are commonly applied to the estimated au-
tocorrelation of the observed process. More specifically,
let the AR process x[n] (of known order p) be given by

x[n] = −
p∑

k=1

akx[n− k] + w[n] ∀n (1)

where a = [a1 a2 · · · ap]T are the unknown AR param-
eters, to be estimated fromN observations x[0], . . . , x[N−
1]. w[n] denotes some independent, identically dis-
tributed (iid) zero-mean sequence with variance σ2w,

often termed the “driving noise”. It is assumed that
the polynomial A(z)

�
= 1+ a1z

−1 + · · ·+ apz
−p has all

its roots inside the unit-circle, hence x[n] is stationary.
Using some straightforward manipulations, mainly ac-
counting for statistical independence (hence no correla-
tion) between w[n] and past values x[n− �] (for � > 0),
the “full” ((p + 1) × (p + 1)) form of the Yule-Walker
equations can be easily obtained as

⎡
⎢⎢⎢⎣

R[0] R[−1] · · · R[−p]
R[1] R[0] · · · R[−p+ 1]
...

. . . . . .
...

R[p] R[p− 1] · · · R[0]

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Rp+1

⎡
⎢⎢⎢⎢⎢⎣

1
a1
a2
...
ap

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ā

=

⎡
⎢⎢⎢⎣

σ2w
0
...
0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
σ2we1

,

(2)

where R[�]
�
= E[x[n]x[n − �]] denotes the autocorre-

lation sequence of x[n], ā
�
= [1 aT ]T , and e1 is the

first column of the (p + 1) × (p + 1) identity matrix.
When the correlation values R[0], . . . , R[p] are known,
the coefficients a can be extracted from this set (along
with σ2w), e.g., by solving the system with the right-
hand side (RHS) replaced by e1, followed by scaling
the solution (along with the RHS) such that its leading
element becomes 1. An alternative, “reduced” (p × p)
form can be obtained by maintaining only the last p
equations, as in

Rpa = −rp, (3)

where Rp is the lower-right p × p block of Rp+1, and

rp
�
= [R[1] R[2] · · · R[p]]T is the lower-left p× 1 vector

of the same matrix.
When the correlation values are unknown, Rp+1

may usually be consistently estimated, e.g., using

R̂p+1 =
1

N − p

N−1∑
n=p

xnx
T
n , (4)

where xn
�
= [x[n] x[n− 1] · · · x[n− p]]T .
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When the driving noise w[n] is Gaussian, the es-
timate of a resulting from solving the YW equations
with these estimated correlations coincides (asymptot-
ically in N , when end-effects are negligible) with the
Maximum-Likelihood (ML) estimate. Consequently,
this estimate is asymptotically unbiased and optimal
(among all unbiased estimates) in the sense of mean
square estimation error, attaining (asymptotically) the
associated Cramér-Rao lower bound (CRLB).

However, when the driving noise is non-Gaussian,
the resulting estimate is no longer ML, and may there-
fore be far from optimal (even asymptotically). The
derivation and computation of the ML estimate may
then become computationally cumbersome in some cases
(see, e.g., [7] for the case of a Gaussian-Mixture), and
intractable in other cases. It is therefore of interest,
in such cases, to look for other, more simple estimates,
which, although not optimal, may still offer significant
improvement over the correlations-based estimate. In
this paper we show how such an estimate can be based
on a similar form of YW equations, applied to off-origin
Hessians of the log-characteristic function (LCF), rather
than to correlations. We demonstrate (in simulation)
the potential for significant improvement in the esti-
mation accuracy for non-Gaussian processes.

2. OFF-ORIGIN HESSIANS OF THE LCF

Off-origin Hessians of the LCF are a relatively new
emerging tool, offering a “hybrid” statistic, concep-
tually reconciling second-order statistics with (classi-
cal) higher-order statistics. Cumulants of any order
are well-known to be the derivatives1 (of respective or-
ders) of the LCF at the origin. When second-order
cumulants (correlations) are insufficient to extract suf-
ficient statistical information, a classical approach is
to resort to higher-order derivatives (cumulants) at the
origin. As an appealing alternative, it is also possible to
remain at the more comfortable second-order differenti-
ation, but to move away from the origin. These second-
order derivatives maintain the convenient form of ma-
trices (called Hessians), rather than tensors (multi-way
arrays), which represent higher-order derivatives. In
the sequel we shall refer to these matrices as “char-
relation” (pronounced “car-relation”) matrices (substi-
tuting correlation matrices), reflecting their link to the
characteristic function.

The use of off-origin derivatives (of arbitrary or-
der) of the LCF seems to have been first proposed by
Gürelli and Nikias in [4] in the context of various array-
processing applications, but has not been further pur-
sued by these authors in open literature since. More

1Up to irrelevant multiplications by powers of j =
√−1.

recently, the use of second-order off-origin derivatives
has been proposed by Yeredor et al. in various con-
texts, such as blind source separation [8], blind Finite
Impulse Response (FIR) channel identification [9, 2],
and Direction of Arrival (DOA) estimation [10]. Off-
origin derivatives have also been used by Kawanabe
and Theis [5] and by Comon and Rajih [1].

Let y ∈ RK denote a random vector and let τ ∈ CK

denote an arbitrary (deterministic) vector, to which we
shall refer as a “processing point”. The (generalized2)
characteristic function (CF) and the LCF are defined,
respectively, as

φy(τ )
�
= E[eτ

Ty ] , ψy(τ )
�
= log(φy(τ )), (5)

whenever these means exist. Note that if the support
of the probability distribution function of y is finite,
then φy(τ ) exists for all τ . Otherwise, it exists for
all imaginary-valued τ , and may or may not exist for
general complex-valued τ . The K × 1 gradients and
K ×K Hessians are defined, respectively, as:

φy(τ )
�
=

∂Tφy(τ )
∂τ

∣∣∣∣
τ

, ψy(τ )
�
=

∂Tψy(τ )
∂τ

∣∣∣∣
τ
, (6)

Φy(τ )
�
=

∂2φy(τ)
∂τ 2

∣∣∣∣
τ

, Ψy(τ )
�
=

∂2ψy(τ )
∂τ 2

∣∣∣∣
τ
. (7)

Ψy(τ ) will serve as our alternative “charrelation”
matrix. The following general properties of charrela-
tion matricesΨy(τ ) would be useful in our derivations:

Property 1. If y can be partitioned into statistically
independent groups, then Ψy(τ ) is block-diagonal (with
the respective partition) for all τ (at which it exists).
Namely, two statistically independent random vectors
are not only uncorrelated, but also “uncharrelated”.

Proof. Assume that y = [yT1 yT2 ]
T , where y1 ∈ R

K1

and y2 ∈ RK2 are statistically independent (with K1+
K2 = K). Then, defining a similar partition for τ =
[τT1 τ

T
2 ]

T , we have, due to the statistical independence,

φy(τ ) = E[eτ
T
1 y1+τ

T
2 y2 ] = φy1(τ 1)φy2(τ 2), (8)

thus
ψy(τ ) = ψy1(τ 1) + ψy2(τ 2), (9)

hence τ 1 and τ 2 are decoupled in ψy(τ ), therefore the
cross-derivatives (the respective off-diagonal blocks of
Ψy(τ )) vanish, and Ψy(τ ) is block-diagonal.

2This definition slightly differs from the classical definition,
by allowing a complex-valued argument rather than a real-valued
argument multiplied by j.
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Property 2. If y can be expressed as a linear trans-
formation of another random vector z ∈ RL, namely
y = Az where A is any K × L matrix, then

Ψy(τ ) = AΨz(AT τ )AT , (10)

whereΨz(AT τ ) is the charrelation matrix of z atAT τ .
Thus, the effect of a linear transformation on the char-
relation matrix resembles its effect on the correlation
matrix.

Proof. Note that φy(τ ) = E[eτ
TAz ] = φz(AT τ ), so

ψy(τ ) = ψz(AT τ ), and the result follows immediately
by applying the chain-rule in the differentiation.

3. CHARRELATION-BASED YW EQNS.

We now return to the AR process x[n]. Define a vector

yn
�
= [w[n] x[n− 1] x[n− 2] · · · x[n− p]]T , which can

be expressed as a linear transformation of the vector
xn (of (4)), as yn = Axn:
⎡
⎢⎢⎢⎢⎢⎢⎣

w[n]
x[n− 1]

...

...
x[n− p]

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
yn

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 a1 a2 · · · ap
0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . . . .
...

0 · · · · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎣

x[n]
x[n− 1]

...

...
x[n− p]

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
xn

.

(11)
It then follows from Property 2 that (for convenience,we
drop the index n from charrelations of xn, yn, due to
stationarity)

Ψy(A−1τ ) = AΨx(τ )AT , (12)

where, due to the statistical independence between w[n]
and past-values of x[n], and by virtue of Property 1,
Ψy(A−1τ ) is block-diagonal: It consists of an upper-
left 1×1 block and a lower-right p×p block. Therefore,
multiplying (12) by e1 on the right, we obtain

vw(τ )e1 = AΨx(τ )ATe1, (13)

where vw(τ ) is some constant. In fact, vw(τ ) is the
upper-left 1×1 “block” of Ψy(A−1τ ), which is merely
the second derivative of the LCF of the driving noise
w[n] at (A−1τ )1 (the first element of the vector (A−1τ )).
It is a statistical property of the driving-noise, depend-
ing on the “processing-point” τ and, generally, on the
AR parameters. For τ = 0, vw(0) is the variance σ2w
of w[n].

Since A−1e1 = e1 and ATe1 = ā, we can obtain
the full-form of the YW equations by left-multiplying
(13) with A−1 (and switching sides, for convenience):

Ψx(τ )ā = vw(τ )e1 . (14)

This is our new “full-form” of the YW equations,
applied to the charrelation matrix Ψx(τ ), rather than
to the correlation matrixR as in (2). In fact, for τ = 0,
Ψx(τ ) coincides with R, and (14) reduces to (2). To
obtain the “reduced-form” (as in (3)), we only consider
the last p rows,

Ψx(τ )(2:p+1,2:p+1)a = Ψx(τ )(2:p+1,1), (15)

where the indices in the subscripts are in Matlab� no-
tations. With any selected “processing-point” τ for
which Ψx(τ ) exists, these equations can be used for
extracting AR parameters from the charrelation ma-
trix.

4. CHARRELATION MATRIX ESTIMATES

In order to exploit these YW equations in estimating
the AR parameters from the available data x[n], the
charrelation matrix Ψx(τ ) has to be estimated first.
To this end, we now present a simple, intuitively ap-
pealing estimation scheme. Observe first, by straight-
forward differentiation, that the Hessian of the LCF
can be expressed in terms of the CF, its gradient and
its Hessian (defined in (5)-(7)) as follows:

Ψx(τ ) =
Φx(τ )φx(τ )− φx(τ )φ

T
x(τ )

φ2x(τ )
. (16)

These quantities can in turn be consistently3 estimated
from the observed data using straightforward empirical
averaging and differentiation: Defining αn

�
= eτ

Txn ,

φ̂x(τ ) =
1
N

∑
n

αn , φ̂x(τ ) =
1
N

∑
n

xnαn,

Φ̂x(τ ) =
1
N

∑
n

xnx
T
nαn. (17)

With slight manipulations, an estimate of the charrela-
tion matrix, resulting from substitution of (4) in (16),
can be conveniently expressed as

Ψ̂x(τ ) =
1∑N−1

n=p αn

N−p∑
n=p

αn(xn − x̃)(xn − x̃)T , (18)

which can be regarded as a “specially weighted” covari-
ance matrix, where the “weights” are αn, and x̃ is a
similarly weighted mean, x̃

�
=
∑N−1

n=p αnxn/
∑N−1

n=p αn.
Note that when τ is real-valued, the αn are all real-
positive, and the interpretation of “weights” is valid.
However, when τ is complex-valued, so are (in general)

3Under commonly met regularity conditions; Discussion omit-
ted for lack of space.

III  1027



the αn, which can no longer be intuitively interpreted
as weights - nevertheless, the expression (18) still forms
a valid, usually consistent estimate of Ψx(τ ). Obvi-
ously, when τ = 0, all αn are 1, and this “weighted co-
variance” estimate reduces to the standard covariance
estimate, as expected.

Once the charrelation matrix is consistently esti-
mated at some pre-selected “processing-point” τ , the
YW equations (15) may be solved for a consistent es-
timate of a.

5. SIMULATION RESULTS

To demonstrate the potential improvement, we present
the results of two experiments involving non-Gaussian
AR processes, where the “driving-noise” is a Gaussian-
mixture composed of two equiprobable Gaussians with
means ±1 and equal variances 0.22.

In the first experiment we consider a first-order pro-
cess, and demonstrate the dependence of the perfor-
mance (MSE) on selection of the processing-point τ
(two-dimensional in this case). It is evident (Fig.1)
that the point τ = 0, corresponding to the classical
correlation-based estimate, is far from optimal.

In the second experiment we consider a third-order
process, comparing the performance of the proposed es-
timator (at one selected processing-point) to the corre-
lation based estimate, as well as to a fourth-cumulant-
slice based estimate (e.g., [3]) and to the CRLB, vs. the
number of samples N . The results (Fig.2) show the
MSE in estimation of each of the coefficients, clearly
demonstrating the potential superiority of the proposed
method, which, although still sub-optimal, significantly
reduces the gap to the bound.

6. CONCLUSION

We introduced the use of the Hessian of the LCF (termed
“charrelation” in here), evaluated at a pre-selected “pro-
cessing point” τ , in the framework of YW equations for
AR parameters estimation. When the process is non-
Gaussian, the point τ = 0, leading to the standard
correlation-based equations, is generally sub-optimal,
and better selection of τ can lead to improved perfor-
mance. A remaining key question is how to select a
“good” τ (or a combination of equations based on sev-
eral τ -s) - which is the subject of continuing research.

7. REFERENCES

[1] Comon P. and Rajih M., “Blind Identification of Under-
Determined Mixtures based on the Characteristic Function,”
Signal Processing, vol.86 no.9, pp.2271-2281, 2006.

[2] Eidinger E. and Yeredor A., “Blind mimo identification us-
ing the second characteristic function,” IEEE Trans. Signal
Processing, vol. 53, no. 11, pp. 4067–4079, 2005.

2 1.5 1 0.5 0 0.5 1 1.5 2
2

0
2

55

50

45

40

35

30

25

20

15

τ
2

τ
1

10log
10

(MSE) in estimating a
1

Figure 1: MSE in estimating a1 for each “processing-point”
τ = [τ1 τ2]T . True value: a1 = −0.8, N = 10000. Each point on
the mesh represents the average of 400 trials.

10
3

10
4

60

55

50

45

40

35

30

25

20

estimating a
1

10
lo

g 10
(M

S
E

)

N

CRLB

Char

Corr

Cum4

10
3

10
4

60

55

50

45

40

35

30

25

20

estimating a
2

N

CRLB

Char

Corr

Cum4

10
3

10
4

60

55

50

45

40

35

30

25

20

estimating a
3

N

CRLB

Char

Corr

Cum4

Figure 2: MSE vs. N in estimating a1, a2, a3. ’Char’ - proposed
approach with τ = [−1.6 0.4 0.8 − 0.8]T , ’Corr’ - correlation-
based, ’Cum4’ - 4th cumulants-based. True value: a = [−0.3 −
0.47 0.549]T (poles at 0.9, 0.6± 0.5j). Each point averaged over
400 trials.

[3] Giannakis G.B., Mendel J.M. and Wang W, “ARMA Mod-
eling using cumulant and autocorrelation statistics,” Proc.
ICASSP’87, pp.61-64, 1987.
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