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ABSTRACT

Many works has been made in the context of the recursive or se-
quential MUSIC algorithm for bearing estimation. Indeed, in some
dif cult scenarios as for closely spaced bearings, correlated sources
and at low SNRs, the accuracy of the MUSIC algorithm can be im-
proved by sequentially cancel the previous estimated bearings. In
this paper, we propose a new algorithm, called zero-forcing based
sequential MUSIC, which ef ciently tackles this problem.
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1. INTRODUCTION

Bearings estimation using a sensor array is an important topic in
various applications as for instance mobile/source location or as for
the analysis of the human brain from measurements of scalp poten-
tials or electroencephalogram (EEG) and external magnetic elds or
magnetoencephalogram (MEG).
This work focuses on the MUltiple SIgnal Classi cation (MUSIC)
algorithm introduced in 1979 by Schmits [5]. This algorithm esti-
mates the bearings (source location) from the noisy array response
by minimizing the orthogonal condition between the array manifold
vector and the noise subspace. To improve the performance of this
algorithm in dif cult scenarios as for closely spaced bearings, corre-
lated sources and at low SNRs, several authors have proposed a se-
quential version of the MUSIC algorithm. These methods are based
on sequential optimization criterion in which each bearing is found
as the global optimum of a different cost function.
More precisely, the S-MUSIC (Sequential-MUSIC) of Oh et al. [4]
and IES-MUSIC (ImprovEd Sequential-MUSIC) of Stoica et al. [6]
are based on the Alternative Projection technique. By estimating the
bearings sequentially rather than simultaneously, these approaches
removes effectively the spatial interferences among sources and has
a better resolution capabilities at the price of higher computational
cost. The Recursive-MUSIC (R-MUSIC) [2] and its improved ver-
sion, the Recursively Applied and Projected-MUSIC (RAP-MUSIC)
[3] algorithm work by applying a MUSIC search to a modi ed prob-
lem in which we rst project both the estimated signal subspace and
the array manifold vector away from the subspace spanned by the
sources that have already been found. Finally, note that two impor-
tant points are (1) all of these methods avoid the delicate search of
several optimum in the MUSIC pseudo-spectrum and (2) they are
based on the signal subspace de ation principle.
In this paper, we present a new sequential MUSIC algorithm, called
Zero-Forcing MUSIC (ZF-MUSIC) algorithm. Our approach is dif-
ferent from the others since we do not perform a de ation of the sig-

nal subspace and we directly scale the MUSIC criterion. By means
of Monte-Carlo simulations, we show that our approach has a lower
variance than the other sequential MUSIC algorithms for closely
spaced bearings.

2. MUSIC ALGORITHM FOR PARAMETRIC MODEL

2.1. The Multi-Input Multi-Output (MIMO) model

Assume there areM narrowband plane waves (sources) simultane-
ously incident on an L sensor Uniform Linear Array (ULA). The
array response for the t-th snapshot is given by

�
��
x1(t)

...
xL(t)

�
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(1)

is the steering manifold. The L-sensor steering vector

pL(φ) =
1√
L

�
1 eiφ . . . eiφ(L−1)

�T
(2)

is parameterized by φ = −2π(Δ/c) sin(θ) where θ is the bearing,
Δ is the distance between two consecutive sensors and c is the wave-
length. The noisy observations on each sensor, x�(t), is collected in
a vector given by x(t) = [x1(t) . . . xL(t)]

T . In a similar way, we
de ne the noise vector n(t) = [n1(t) . . . nL(t)]

T in which each
n�(t) is the contribution of the noise on the �-th sensor which is as-
sumed to be a zero-mean white Gaussian process of variance σ2. The
sources, αm(t), are collected in vector α(t) = [α1(t) . . . αM (t)]T

and the number of sources,M , is assumed to be known or previously
estimated [7]. Finally, the MIMO model for T snapshots is

X =
�
x(1) . . . x(T )

�
= AΛ +N (3)

where Λ = [α(1) . . . α(T )] and N = [n(1) . . . n(T )].
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2.2. The MUSIC algorithm

From (3), the sample spatial covariance of the noisy observation is

R̂X =
1

T
XXH (4)

= ARΛA
H + σ2I (5)

where RΛ = 1
T
ΛΛH is the sample source covariance. By eigen-

decomposing the rank-L matrix R̂X , we have

R̂X =
L�
�=1

λ�u�u
H
� (6)

where λ1 ≥ . . . ≥ λM > λM+1 ≥ . . . ≥ λL are the ordered eigen-
values and u� is the eigen-vector of the sample spatial covariance.
Let G = [uM+1 . . . uL] be the matrix constituted from the eigen-
vector associated to the L − M smallest eigen-values. Then, the
noise projector is de ned by

Π⊥ = GGH =
L�

�=M+1

u�u
H
� . (7)

Consequently, the well-known optimization criterion of the
spectral-MUSIC criterion [5, 7] is

argmax
φ

1

pL(φ)HΠ⊥pL(φ)
. (8)

since ‖pL(φ)‖2 = 1.

3. ZERO-FORCING SEQUENTIAL MUSIC ALGORITHM

In this part, we modify the classical MUSIC criterion, given in ex-
pression (8), according to the following de nition.

De nition 1 The spectral form of the zero-forcing sequential MU-
SIC (ZF-MUSIC) algorithm is given by

φm = argmax
φ

F (Lz)
m (φ)

pL(φ)HΠ⊥pL(φ)
(9)

form ∈ [1 :M ] and with Lz being a positive integer and F (Lz)
m (φ)

a quadratic function de ned according to

F (Lz)
m (φ) = pLz

(φ)HP⊥mpLz
(φ) (10)

where P⊥m is the noise projector associated to the space of them−1
previously estimated bearings, denoted by R(Am). This projector
is de ned according to

P⊥m = I − Pm (11)

in which

Pm = Am(AHmAm)−1AHm (12)

and
Am =

�
pLz

(φ1) . . . pLz
(φm−1)

�
. (13)

Then the ZF-MUSIC algorithm can be described according to

Init. Apply the spectral MUSIC algorithm and estimate φ1 with
A1 = I , ie., F (Lz)

1 (φ) = 1. Next, compute projector
P⊥2 = I − pLz

(φ1)pLz
(φ1)

H with Lz � L.

Loop Form ∈ [2 :M ], compute the zero-forcing functionF (Lz)
m (φ)

based on expressions (10)-(13) and solve criterion (9).

4. ANALYSIS OF THE ZERO-FORCING FUNCTION

4.1. Asymptotic behavior of the zero-forcing function

Property 1 The zero-forcing function has the following properties:

F (Lz)
m (φ) =

�
0 for pLz

(φ) ∈ R(Am)
1 otherwise and for large Lz.

(14)

In words, the zero-forcing function is equal to zero for all the
previously estimated bearing and is asymptotically (ie., for large
Lz) one everywhere else. So, the MUSIC pseudo-spectrum, given
in (8), is forced to be zero for previously estimated bearings and is
unchanged for the other ones.

Proof:

1. Let pLz
(φ) ∈ R(Am) (meaning that pLz

(φ) has been already
estimated), then it is straightforward to see that

F (Lz)
m (φ) = 1− pLz

(φ)HPmpLz
(φ) = 0 (15)

since PmpLz
(φ) = pLz

(φ).

2. Let αLz
(φi, φj)

def
= 〈pLz

(φi), pLz
(φj)〉 = pLz

(φi)
HpLz

(φj)
where 〈., .〉 de ned the Hermitian inner product. Observe [9]
that

αLz
(φi, φj) =

1

Lz

Lz−1�
�=0

ei(φj−φi)�
Lz→∞−→ δφi−φj (16)

where δφi−φj = 1 if φi = φj and 0 otherwise. So, for
pLz

(φ) /∈ R(Am), we have

(A
H
mAm)

−1
=

�
���

1 . . . αLz (φ1, φm−1)

.

.

.
. . .

.

.

.
α∗Lz (φ1, φm−1) . . . 1

�
���

−1

Lz→∞

−→ Im−1

where Im−1 is the (m− 1)-rank identity matrix and

AHmpLz
(φ) =

�
��
αLz

(φ1, φ)
...

αLz
(φm−1, φ)

�
	
 Lz→∞−→ 0m−1 (17)

where 0m−1 is the (m − 1) × 1 null vector. Consequently,

thanks to de nition (12), we have pLz
(φ)HPmpLz

(φ)
Lz→∞−→ 0

and thus

F (Lz)
m (φ) = 1− pLz

(φ)HPmpLz
(φ) (18)

Lz→∞−→ 1. (19)

III ­ 1018



4.2. Width and attenuation of the zero-forcing function

Now, without loss of generality assume that Lz is large, then the
zero-forcing function can be rewritten according to

F (Lz)
m (φ) = 1− 1

L2
z

GLz
(φ) (20)

where

GLz
(φ) = QLz

(φ) ∗
�
m−1�
�=1

δφ−φ�

�
(21)

with ∗ denoting the convolution product and

QLz
(φ) =

1− cos(Lzφ)

1− cos(φ)
. (22)

So, function F (Lz)
m (φ) is the sum of translated periodic functions

centered around the desired φ’s. The width of the rst lobe is ob-
tained by considering the distance between two consecutive zeros of
function QLz

(φ) centered around φ = 0, ie., we look for δ which is
the solution of

QLz
(±δ) = 0 ⇐⇒

�
1− cos(±δ) 
= 0,

1− cos(±δLz) = 0.
(23)

Consequently, δ = ± 2π
Lz

and thus the width of the rst lobe is
given by

Δ = 2δ =
4π

Lz

. (24)

This quantity is inversely proportional to parameter Lz. As this
parameter is assumed to be large, the rst lobe is tight. Thus, the ZF-
MUSIC allows an accurate cancelling of the previously estimated
bearing.

In addition, we can determine the attenuation of the second lobe
which is approximatively centred around 3π/Lz. So, the attenuation
in percent is given by

Q =
100

L2
z

GLz

�
φm ± 3π

Lz

�
=

100

L2
z
sin2 3π

2Lz

. (25)

or equivalently as Lz is large, Q = 400
9π2

≈ 4, 5% which is a quite
small quantity.

5. NUMERICAL SIMULATIONS

The context of these simulations is an Uniform and Linear Array
(ULA), with a half wavelength, L = 10 sensors and T = 100 snap-
shots with two uncorrelated sources, ie., RΛ is diagonal in (6). We
denote by θ1 the bearing of the rst source and by θ2 the bearing
of the second one. We consider two situations. The bearing of the
rst source, θ1, can be either exactly known (cf. Fig. 1) or esti-

mated, (cf. Fig. 2). In the largely (resp. closely) spaced situa-
tion, we consider θ1 = 0.1 and θ2 = 0.9 rad (resp. θ1 = 0.595
and θ2 = 0.6 rad). In this last case, the “distance” between the
two bearings is small and under the Rayleigh resolution [8], ie.,

|φ1 − φ2| = |π(sin(θ2)− sin(θ1))| ≈ 0.013� 0.49 ≈ 2
�

6
L2−1

.

So, in our simulation context, the MUSIC algorithm cannot resolve
the two bearings. The performance criterion is the Mean Square Er-
ror (MSE) which is computed by averaging over 500 Monte-Carlo
trials for each Signal to Noise Ratio (SNR).

5.1. Improve estimation when θ1 is known

We rst begin by considering that θ1 is known (estimated without
error). This situation is sometimes realistic [1] and by doing this,
we focus only on the errors introduced on the desired bearing, θ2.
In Fig. 1-(a), we consider largely spaced bearings. In that case,
all algorithms are equivalent. However, according to Fig. 1-(b),(c)
and (d) where we have considered different Lz and the bearings are
extremely close, the ZF-MUSIC becomes more accurate in compari-
son to the S-MUSIC and the RAP-MUSIC algorithms, especially for
low SNRs. Note that to improve the rejection of θ1, the ZF-MUSIC
algorithm needs to have a tight zero-forcing function. Toward this
end, we can increase parameter Lz since we have seen in section 4.2
that the width of the zero-forcing function is inversely proportional
to Lz (cf. Fig. 3-(a)). Obviously, increasing this parameter leads
to a higher complexity cost. This is a price to pay to have a better
accuracy.
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Fig. 1. MSE Vs. SNR, (a) Largely spaced bearings withLz = L, (b)
Closely spaced bearings with Lz = L, (c) Closely spaced bearings
with Lz = 2L, (d) Closely spaced bearings with Lz = 10L.

5.2. Global estimation in the sequential case

In this part, θ1 and θ2 are sequentially estimated. According to Fig.
2-(a) and (b), the accuracy of the ZF-MUSIC algorithm is compa-
rable to the two others approaches for Lz = L and for largely or
closely spaced bearings. Here again, by increasing parameter Lz,
the estimation of θ2 is improved as we can see on Fig. 2-(c) and (d)
where we have considered Lz = 2L and Lz = 20L, respectively.
In addition, to further illustrate the effect of parameter Lz, we have
reported on Fig. 3-(b), the MSE of θ2 wrt. Lz and for 0 dB of SNR.
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We see clearly the gain. Thus, the ZF-MUSIC algorithm can con-
trol the rejection level of the previously estimated bearings thought
parameter Lz.
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Fig. 2. MSE Vs. SNR, (a) Largely spaced bearings with Lz = L, (b)
Closely spaced bearings with Lz = L, (c) Closely spaced bearings
with Lz = 2L, (d) Closely spaced bearings with Lz = 20L.

6. CONCLUSION

Traditionally, the key principle of the sequential MUSIC algorithms
is to de ate the signal subspace. In other terms, the dimension of this
subspace is reduced by projecting the observed signal (or a matrix-
based representation) onto the noise subspace associated to the pre-
viously estimated bearings. In this work, we do not follow this line
and we leave unchanged the signal subspace but we scale the MU-
SIC criterion by an appropriate function. The latter is zero for all
previously estimated bearings and asymptotically one elsewhere. We
show in this work that this approach, called Zero-Forcing Sequential
MUSIC algorithm, outperforms all the existing methods for closely
spaced bearings.
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