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ABSTRACT

We introduce a conjugate gradient method for estimating and
tracking the minor eigenvector of a data correlation matrix. This new
algorithm is less computationally demanding and converges faster
than other methods derived from the conjugate gradient approach.
It can also be applied in the context of minor subspace tracking, as
a pre-processing step for the YAST algorithm, in order to enhance
its performance. Simulations show that the resulting algorithm con-
verges much faster than existing minor subspace trackers.

Index Terms— Conjugate gradient methods, Minor subspace
analysis, Subspace tracking.

1. INTRODUCTION

Fast estimation and tracking of the principal or minor subspace of a
sequence of random vectors is a major problem in many applications,
such as adaptive filtering and system identification (e.g. source local-
ization, spectral analysis) [1]. In the literature, it is commonly admit-
ted that minor subspace analysis (MSA) is a more difficult problem
than principal subspace analysis (PSA)1. In particular, the classi-
cal Oja algorithm [2] is known to diverge. Some more robust MSA
algorithms have been presented in [3, 4]. However the convergence
rate of these algorithms remains much lower than that of the classical
PSA techniques. Recently, we presented in [5] a new minor subspace
tracker dedicated to time series analysis. This algorithm, referred to
as YAST, reaches the lowest complexity found in the literature, and
outperforms classical methods in terms of subspace estimation.

Usual MSA techniques are derived from the gradient approach,
applied to the minimization of an appropriate cost function. How-
ever, the conjugate gradient technique, initially introduced for solv-
ing linear systems [6, pp. 520–530], is known to offer a much faster
convergence rate. This approach was applied to the computation
and tracking of the minor component of a correlation matrix [7–10].
Here we propose a new algorithm for tracking the minor component,
inspired by the preconditioned conjugate gradient (PCG) method
presented in [11], which converges faster than existing methods. We
show that this new algorithm can be used as a pre-processing for the
YAST minor subspace tracker, in order to enhance its performance.

The paper is organized as follows. The new conjugate gradient
method for computing the minor component of a correlation matrix
is introduced in section 2. Section 3 presents an adaptive version of

The research leading to this paper was supported by the ACI Masse de
données Music Discover, and by the European Commission under contract
FP6-027026, Knowledge Space of semantic inference for automatic annota-
tion and retrieval of multimedia content - K-Space.

1Note that computing the minor subspace of a correlation matrix can sim-
ply be performed by applying PSA techniques to the inverse matrix. How-
ever this approach is often disregarded, because of its high complexity. This
is why there is so much interest in designing specific algorithms for MSA.

this algorithm, and describes how it can be applied to minor subspace
tracking. Simulation results are presented in section 4. Finally, the
main conclusions of this paper are summarized in section 5.

2. COMPUTATION OF THE MINOR EIGENVECTOR

2.1. Constrained descent methods

The Rayleigh quotient of an n×n correlation matrix Cxx is2

J : w ∈ C
n �→ wHCxxw

/
‖w‖2

. (1)

It is well known that the minimal value of the Rayleigh quotient is
the lowest eigenvalue λ of the matrix Cxx, which is reached when
w is an eigenvector of Cxx associated to λ . Therefore a possible
approach for computing w consists in recursively minimizing this
quotient. This optimization can be carried out by means of usual
descent methods, such as the gradient (also known as steepest de-
scent) or the conjugate gradient methods. An interesting property of
the Rayleigh quotient is that its critical points, at which the gradient
is zero, are either unstable saddle points or the global minimum or
maximum. Therefore the descent methods are usually guaranteed to
find the global minimum, unless the initial guess for the eigenvector
is deficient in the direction corresponding to the lowest eigenvalue3.

From a given vector w(0), the descent methods compute a series
of vectors {w(t)}t∈N which converges to w. Here we focus on con-
strained implementations of these methods, where the vectors w(t)
belong to the unit sphere (‖w(t)‖ = 1). The steepest descent ap-
proach consists in looking for the new unitary vector w(t) in the
subspace spanned by the previous unitary vector w(t − 1) and the
gradient ∇J(w(t−1)), which is denoted ∇J(t−1) below. Differen-
tiating equation (1) yields

∇J(t−1) = 2(Cxx w(t−1)−λ (t−1)w(t−1)) , (2)

where λ (t − 1) = J(w(t − 1)). Since ∇J(t − 1) and w(t − 1) are
orthogonal, the unit vector w(t) can be written in the form

w(t) = w(t−1)cos(θ)−g(t−1)sin(θ),

where g(t−1) =
∇J(t−1)
‖∇J(t−1)‖

, and θ is the angular step of the gradient

method. The optimal step is that which minimizes J(w(t)) with re-
spect to θ , which is equivalent to the algorithm proposed in [10].
Compared to the steepest descent approach, our conjugate gradi-
ent method additionally takes the previous descent direction into ac-
count. Thus the new vector w(t) is searched in the subspace spanned
by the previous vector w(t−1), the normalized gradient g(t−1), and
the unitary vector p(t−1), tangent to the unit sphere and orthogonal

2The row vector wH is the conjugate transpose of the column vector w.
3In practice however, this singular case is never observed because of

rounding errors due to the finite machine precision.
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Fig. 1. New search directions at time t

to w(t− 1), which prolongs the shortest path leading from w(t− 2)
to w(t−1), as shown in figure 1. In other words, the new vector w(t)
minimizes the function J in the subspace

S (t−1) = span{w(t−1),w(t−2),g(t−1)}. (3)

2.2. Conjugate Gradient method

As mentioned above, descent methods usually converge to the global
minimum of the Rayleigh quotient. Thus if ∇J(t−1) = 0, the conju-
gate gradient method has converged. Below, we assume ∇J(t−1) �=
0. Suppose that the n×3 matrix S(t−1)= [w(t−1), p(t−1),g(t−1)]
is an orthonormal basis of the subspace S (t − 1) defined in equa-
tion (3). Below, we show how to compute the vectors w(t), p(t) and
g(t), such that the n× 3 matrix S(t) = [w(t), p(t),g(t)] is orthonor-
mal. Since the unitary vector w(t) belongs to S (t−1), it satisfies

w(t) = S(t−1)θ(t), (4)

where θ(t) is an unitary vector of dimension 3. Then substituting
equation (4) into equation (1) yields

J(S(t−1)θ(t)) = θ(t)HC−ss(t)θ(t), (5)

where the 3×3 positive definite matrix C−ss(t) is defined as

C−ss(t) = S(t−1)HC−xs(t) (6)

and C−xs(t) is the n×3 compressed correlation matrix

C−xs(t) = Cxx S(t−1). (7)

Equation (5) shows that the vector w(t) = S(t − 1)θ(t) mini-
mizes the function J if and only if θ(t) is an unitary eigenvector of
the matrix C−ss(t) associated to the lowest eigenvalue λ (t). Thus both
θ(t) and λ (t) can be computed by means of any symmetric eigen-
value algorithm (see [6, Chapter 8] for instance).

Let us denote {θ1(t),θ2(t),θ3(t)} the coefficients of the vector
θ(t). Since the directions of the vectors w(t) and w(t−1) are differ-
ent4, we cannot have both θ2(t) = 0 and θ3(t) = 0. Thus the unitary
vector φ(t) introduced below is always well-defined5:

φ(t) =

⎡
⎢⎢⎢⎢⎣

−
√
|θ2(t)|2 + |θ3(t)|2

θ∗1 (t) θ2(t)
|θ2(t)|

/√
1+

∣∣∣ θ3(t)
θ2(t)

∣∣∣2 (or 0 if θ2(t) = 0)

θ∗1 (t) θ3(t)
|θ3(t)|

/√
1+

∣∣∣ θ2(t)
θ3(t)

∣∣∣2 (or 0 if θ3(t) = 0)

⎤
⎥⎥⎥⎥⎦ . (8)

4Indeed, if both vectors had the same direction, then w(t−1) would also
minimize the function J in S (t − 1). In this case, ∇J(t − 1) would be or-
thogonal to S (t−1). In particular, ∇J(t−1) would be orthogonal to itself,
thus ∇J(t−1) = 0. However we supposed that ∇J(t−1) �= 0.

5The particular form of equation (8) aims at avoiding rounding errors
when θ2(t) or θ3(t) tends to zero.

Then the new descent direction p(t) is defined as follows:

p(t) = S(t−1)φ(t). (9)

Indeed, it can be verified that the family {w(t), p(t)} is an orthonor-
mal basis of the subspace span{w(t),w(t− 1)}. Then suppose that
∇J(t) �= 0 (otherwise the algorithm has converged), and let g(t) =
∇J(t)

/
‖∇J(t)‖ . Since w(t) minimizes J in the subspace S (t−1),

∇J(t)⊥S (t−1). Since both w(t) and p(t) belong to S (t−1), g(t)
is orthogonal to w(t) and p(t). Therefore the matrix

S(t) = [w(t), p(t),g(t)] (10)

is an orthonormal basis6of the subspace S (t).

2.3. Fast implementation

The dominant cost of the conjugate gradient method as presented
above is 3n2 flops7, which is three times the cost of the product of
the n×n matrix Cxx by an n-dimensional vector (cf. equations (2)
and (6)). Note that in some applications such as time series analysis,
the correlation matrix Cxx presents a particular structure, due to the
shift invariance property. In this case, the correlation matrix-vector
products are reduced to Toeplitz matrix-vector products, which can
be efficiently computed by means of Fast Fourier Transforms (FFT).
Thus the dominant cost of our algorithm becomes O(n log2(n)).

However, to efficiently implement this algorithm, the number of
correlation matrix-vector products has to be reduced. The following
implementation involves only one such multiplication per iteration.
This is achieved by recursively updating 3 auxiliary matrices:

• the n×3 subspace matrix S(t) defined in equation (10);

• the n×3 compressed matrix Cxs(t) � C−xs(t +1):

Cxs(t) = CxxS(t); (11)

• the 3×3 positive definite matrix Css(t) � C−ss(t +1):

Css(t) = S(t)HCxs(t). (12)

These three auxiliary matrices can be efficiently updated. Let

Θ(t) = [θ(t),φ(t)]. (13)

Substituting equations (4), (9) and (13) into (10) yields

S(t) =
[

S(t−1)Θ(t) g(t)
]
. (14)

Then substituting equations (14) and (7) into equation (11) yields

Cxs(t) =
[

C−xs(t)Θ(t) Cxx g(t)
]
. (15)

Once the auxiliary matrices S(t) and Cxs(t) have been updated, the
gradient direction 1

2 ∇J(t) = Cxxw(t)−λ (t)w(t) is trivially obtained
as the first column of the matrix Cxs(t)−λ (t)S(t).

6In practice, as long as the algorithm converges, ‖∇J(t)‖ becomes smaller
and smaller. Therefore the normalization of ∇J(t) introduces rounding errors
which make the vector g(t) slowly lose its orthogonality with respect to w(t)
and p(t). However this orthogonality can be enforced by means of the fol-
lowing operations:

g(t) ←
(
In−w(t)w(t)H − p(t) p(t)H

)
g(t)

g(t) ← g(t)
/
‖g(t)‖ .

7In this paper, a flop is a multiply / accumulate (MAC) operation.
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Substituting equations (11), (14), (7) and (6) into (12) yields8

Css(t) =

⎡
⎣ Θ(t)HC−ss(t)Θ(t)

×
×

× × ×

⎤
⎦ . (16)

The pseudo-code of this fast algorithm is summarized in ta-
ble 1. Its overall complexity is n2 + O(n) flops (or O(n log2(n)) in
the case of time series analysis), which can be compared to that of
Fuhrmann’s conjugate gradient method [7]: 2n2 +O(n).

Table 1. Fast Minor Component Computation
Eq. Flops

[θ(t),λ (t)] = min
(
eig

(
C−ss(t)

))
O(1)

φ(t) =

⎡
⎢⎢⎢⎢⎣

−
√
|θ2(t)|2 + |θ3(t)|2

θ∗1 (t) θ2(t)
|θ2(t)|

/√
1+

∣∣∣ θ3(t)
θ2(t)

∣∣∣2

θ∗1 (t) θ3(t)
|θ3(t)|

/√
1+

∣∣∣ θ2(t)
θ3(t)

∣∣∣2

⎤
⎥⎥⎥⎥⎦ (8) O(1)

Θ(t) = [θ(t),φ(t)] (13)
S(t)(:,1:2) = S(t−1)Θ(t) (14) 6n
Cxs(t)(:,1:2) = C−xs(t)Θ(t) (15) 6n
Css(t)(1:2,1:2) = Θ(t)HC−ss(t)Θ(t) (16) O(1)
1
2 ∇J(t) = Cxs(t)(:,1)−λ (t)S(t)(:,1) n
S(t)(:,3) = ∇J(t)

/
‖∇J(t)‖ n

Cxs(t)(:,3) = Cxx(t)S(t)(:,3) n2

Css(t)(:,3) = S(t)HCxs(t)(:,3) 3n

3. MINOR COMPONENT AND SUBSPACE TRACKING

3.1. Adaptive implementation of the Conjugate Gradient method

In an adaptive context, we consider a sequence of n-dimensional data
vectors {x(t)}t∈Z, and we are interested in tracking the minor com-
ponent of its correlation matrix Cxx(t). In the literature, this matrix
is generally updated according to an exponential windowing:

Cxx(t) = β Cxx(t−1)+ x(t)x(t)H (17)

where 0 < β < 1 is the forgetting factor. The principle of the adap-
tive algorithm described below consists in interlacing the recursive
update of the correlation matrix (17) with one step of the conju-
gate gradient method presented in section 2. Since Cxx is now time-
varying, we need to distinguish the following auxiliary matrices:

• the n×3 compressed matrices C−xs(t) and Cxs(t−1):

C−xs(t) = Cxx(t)S(t−1) (18)

Cxs(t−1) = Cxx(t−1)S(t−1) (19)

• the 3×3 positive definite matrices C−ss(t) and Css(t−1):

C−ss(t) = S(t−1)HCxx(t)S(t−1) (20)

Css(t−1) = S(t−1)HCxx(t−1)S(t−1). (21)

Substituting equations (17) and (19) into equation (18) yields

C−xs(t) = βCxs(t−1)+ x(t)s(t)H
, (22)

where s(t) is the 3-dimensional compressed data vector

8In equation (16), the coefficients denoted × cannot be computed recur-
sively. However, since the matrix Css(t) is hermitian, only the last column
has to be computed, the last row being its conjugate transpose.

s(t) = S(t−1)Hx(t). (23)

Then substituting equations (17), (21), and (23) into (20) yields

C−ss(t) = βCss(t−1)+ s(t)s(t)H
. (24)

Besides this modification, the remaining of the algorithm pre-
sented in section 2 is left unchanged. The pseudo-code of the result-
ing algorithm is summarized in table 2. Its overall complexity9 is
n2 + O(n), which is to be compared to that of Chen [8]’s adaptive
conjugate gradient method : 2n2 +O(n).

Table 2. Adaptive Minor Component Computation
Eq. Flops

s(t) = S(t−1)Hx(t) (23) 3n
C−xs(t) = β Cxs(t−1)+ x(t)s(t)H (22) 3n
C−ss(t) = β Css(t−1)+ s(t)s(t)H (24) 9
Fast Minor Component Computation Table 1 n2

3.2. Improving the YAST minor subspace tracker

We are now interested in tracking the r-dimensional minor subspace
of the correlation matrix. Recently, we introduced the YAST algo-
rithm as a very fast and precise minor subspace tracker [5]. Be-
low, we show how the adaptive conjugate gradient method presented
above can be used to enhance the performance of YAST. The YAST
algorithm relies on a principle similar to that introduced in section 2.1:
an n× r orthonormal matrix W (t) spans the r-dimensional minor
subspace of Cxx(t) if and only if it minimizes the criterion

J (W (t)) = trace
(
W (t)HCxx(t)W (t)

)
.

In particular, the minimum of this criterion is equal to the sum of the
r lowest eigenvalues of Cxx(t). However, implementing this mini-
mization over all orthonormal matrices is computationally demand-
ing (the complexity is O(n2r)), and does not lead to a simple recur-
sion between W (t) and W (t − 1). In order to reduce the computa-
tional cost, this search is limited to the range space of W (t−1) plus
one or two additional search directions. It is shown in [5] that this
approach leads to a low rank recursion for the subspace weighting
matrix, which results in a very low complexity (O(nr) in the case
of time series analysis). In [5], the proposed search directions were
x(t) and possibly Cxx(t−1)x(t), which had already been introduced
in the case of PSA [13]. However these vectors, whose most en-
ergetic part belongs to the signal subspace, prove to be much more
suitable for PSA than MSA. In order to enhance the performance of
the YAST minor subspace tracker, we propose to replace these vec-
tors by the vector w(t) computed by our adaptive conjugate gradient
method, which belongs to the minor subspace. Thus the new sub-
space tracker consists in interlacing one iteration of the algorithm in
table 2 prior to each iteration of the YAST algorithm10.

4. SIMULATION RESULTS

4.1. Minor Component Computation

In this section, our conjugate gradient algorithm is applied to the
computation of the minor eigenvector of a fixed n× n positive def-
inite matrix Cxx (with n = 25), randomly chosen. It is compared

9This complexity can also be reduced in the case of time series analysis.
However the exponential window update (17) does not lead to a simple fac-
torization of the correlation matrix in terms of Toeplitz matrices. A truncated
window should be used instead (cf. [12, pp. 2]).

10Note that the computation of the vector Cxx(t)w(t) required by YAST is
already included in our conjugate gradient algorithm.
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to the constrained steepest descent method presented in section 2.1,
and to the conjugate gradient algorithms proposed in [7,8]. For each
algorithm the initial vector is chosen randomly, and 10000 iterations
are computed. As in [3,4], we calculate the average estimation error

ρ(t) = 1
K ∑K

k=1
trace

(
W k(t)

HE1 EH
1 W k(t)

)
trace

(
W k(t)HE2 EH

2 W k(t)
) ,

where the number of algorithm runs is K = 50, k indicates that the
associated variable depends on the particular run, ‖.‖F denotes the
Frobenius norm, E1 (resp. E2) is the exact11 (n− r)-dimensional
principal (resp. r-dimensional minor) subspace basis of Cxx (here
r = 1). Figure 2 shows the evolution of the average errors with
respect to the number of iterations. The three conjugate gradient-
based algorithms converge faster than the steepest descent method,
although Fuhrmann’s algorithm [7] seems less stable than Chen’s al-
gorithm [8] (the error increases after having reached a minimum).
Nevertheless, our conjugate gradient method converges faster than
the other algorithms and provides a better accuracy at convergence.
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Fig. 2. Minor component Computation

4.2. Subspace Tracking

Below, x(t) is a sequence of n = 4 dimensional independent jointly-
Gaussian random vectors, centered and with correlation matrix

Cxx =

⎡
⎢⎣

0.9 0.4 0.7 0.3
0.4 0.3 0.5 0.4
0.7 0.5 1.0 0.6
0.3 0.4 0.6 0.9

⎤
⎥⎦.

We choose r = 2 and W (0) =
[
Ir, 0(r,n−r)

]T
. Four minor subspace

trackers are applied to this sequence: QRI [3], NOOja [4], the orig-
inal, and the modified version of YAST proposed in this paper12

(called gYAST in figure 3). Again, the experiment is repeated K =
50 times. Figure 3 shows the average performance factors. As ex-
pected, the estimation error decreases faster in the case of the mod-
ified version of YAST. As in [3, 4], we also calculated the average
departure from orthogonality of the subspace weighting matrix:

η(t) = 1
K ∑K

k=1

∥∥W k(t)
HW k(t)− Ir

∥∥2
F .

We observed that the orthonormality error of the four algorithms re-
mains negligible after 10000 iterations (i.e. lower than -280 dB).

11E1 and E2 are obtained by the eigenvalue decomposition (EVD) of Cxx.
12The QRI algorithm was implemented with parameter α = 0.99, NOOja

with β = 0.05 and γ = 0.4, and YAST with β = 0.99 and p = 1.

5. CONCLUSIONS

In this paper, we introduced a new conjugate gradient method for
computing the minor eigenvector of a data correlation matrix. It
was shown that this algorithm is less computationally demanding
and converges faster than existing methods derived from the conju-
gate gradient approach. An adaptive version of this algorithm was
proposed, which can be used as a pre-processing step for the YAST
minor subspace tracker, with a negligible overcost. Our simulations
show that the resulting algorithm outperforms other subspace track-
ers found in the literature, and guarantees the orthonormality of the
subspace weighting matrix at each time step.
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