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ABSTRACT

In this paper, we derive an expression for the near-carrier power
spectral density of an oscillator having 1/f phase noise. Motivated
by empirical metrics such as the Allan variance, we develop a rigo-
rous mathematical analysis and derive a closed-form expression for
the oscillator autocorrelation function in the case of exactly 1/f
phase noise that is smoothed using a rectangular time window. We
show that this smoothed 1/f phase noise results in a finite variance
noise process and preserves oscillator stationarity. Furthermore, in
agreement with experimental data, we explain how a quadratic and a
logarithmic term appear in the autocorrelation function and establish
the relationship between the logarithmic term and the 1/f character-
istics of the oscillator random process.

Index Terms— flicker noise, phase noise, power spectral den-
sity, oscillators, stationarity

1. INTRODUCTION

It is known that numerous physical fluctuations have empirical (mea-
sured) spectral densities proportional to 1/fα with α in the vicinity
of 1 (α = 1± ν, ν � 1). This spectral behavior results in two seri-
ous difficulties with finite power systems analysis. Infinite power is
implied due to both low and high frequencies tendency to approach
dc1 and∞ at a 1/f rate.

In terms of the high frequency infinity, a widely accepted as-
sumption is that there has to exist a high frequency fh, at which the
PSD slope becomes steeper [7]. It has never been possible to mea-
sure such a high corner frequency, because 1/f noise disappears in
the white thermal noise that is omnipresent in all electronic systems.
However, as Plank’s analysis for thermal noise revealed a higher cut-
off frequency in the case of white noise sources, the above assump-
tion appears plausible.

As a result of the above, research interest has mainly focused
in characterizing the nature of 1/f perturbations near dc. As with
the high frequencies case, the concept of a lower cut-off frequency
has been introduced, below which the PSD is expected to flatten
off. This approach was adopted in [5] for the analysis of 1/f noise
sources in the phase of an oscillator. The resulting expression for the

1For convenience we use dc in this paper to denote the nominal or average
oscillation frequency.

oscillator autocorrelation function was used to approximate the 1/f
region as a Lorentzian power spectral density (PSD).

Generally, in the past, theoretical models for 1/f processes ei-
ther proposed its representation as a non-stationary random process
(RP) that exhibits infinite memory [8], or concluded that the so-
called “infrared catastrophe” cannot be tackled with traditional sta-
tistical tools [11]. Work by Handel in [6] examines the origins of
1/f noise in electronic devices in the general context of quantum
1/f processes. In this work he argues that the PSD of 1/f processes
diverges to a characteristic with a slope smaller that unity near dc, so
that the “infrared catastrophe” described in [11] is overcome.

In the present work we avoid making the assumption of a lower
cut-off frequency for two reasons: i) such a lower cut-off frequency
has never been observed in experimental data and ii) there does not
exist a theoretical value for the determination of such a lower cut-off
frequency. However, in order to avoid infinities in the phase noise
variance, we will assume a “smoothed” version of 1/f phase noise,
motivated by widely used practical metrics such as the Allan vari-
ance. Following this approach, we derive closed form expressions
for the oscillator autocorrelation function and for the near-carrier
PSD. We show that smoothed 1/f noise does not perturb the os-
cillator stationarity.

2. PHASE NOISE AND FREQUENCY FLUCTUATIONS IN
OSCILLATORS

A rich nomenclature exists concerning noisy oscillators, reflecting
the efforts to combine the conclusions of empirical analyses on one
hand with abstract models and theory on the other. In the present
study, we only need to define a noisy oscillator at a frequency ωosc
as a system whose time domain output ζ(t) can be described as:

ζ(t) = (1 + ε(t)) cos(ωosct+ φ(t)) (1)

where ε(t) and φ(t) are real RPs2. In published research it has
been shown that amplitude fluctuations expressed through ε(t) have
a negligible effect in the near-carrier PSD that interests us and can
therefore be neglected [13], [9]. Furthermore, it is shown in [2] that

2The use of a sinusoidal oscillator does not restrict the generality of our
approach as any periodic function can be analyzed in a cosine-based Fourier
series.
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the PSD of the real valued oscillator ζ(t) can be reconstructed by
halving the PSD of its complex valued analytic3 version:

ψ(t) = ej(ωosct+φ(t)) (2)

assuming ε(t) = 0.
Using the frequency translation property of the Fourier Trans-

form F(·) we can proceed in our analysis by considering solely the
complex valued RP

w(t) = ejφ(t). (3)

We would like to calculate the autocorrelation function of the noise
RP w(t) in order to determine the expression for the oscillator noise
spectrum using the Wiener-Khinchin theorem, given that the oscilla-
tor can be modeled as a wide sense stationary (WSS) process. There-
fore, we are interested in evaluating the expression

Rww(τ) = E[w(t)w∗(t− τ)]

= E[ej(φ(t)−φ(t−τ))]

= E[ejξ(t,τ)] (4)

whereE[·] denotes statistical expectation. It is important to note that
the phase noise variation RP ξ(t, τ)

ξ(t, τ) = φ(t)− φ(t− τ) (5)

that represents 1st order phase noise differences emerges naturally
in the expression of the oscillator autocorrelation function without
imposing any assumptions. In practice, a large number of important
empirical metrics [1] make indirect use of the phase noise variation
RP ξ(t, τ) by utilizing it in empirical estimates of the phase noise
variance of finite length measurement sets.

In order to evaluate Rww(τ) we have to make some assumption
about the phase noise process statistics. Assuming that the RP φ(t)
is zero-mean-Gaussian (ZMG) and that the RPs φ(t) and φ(t − τ)
are jointly Gaussian, it follows that ξ(t, τ) is ZMG. In that case, the
autocorrelation of the oscillator noise is simply given as

Rww(τ) = e−
σ2ξ(τ)

2 (6)

where σ2
ξ(τ) denotes the variance of the RP ξ(t, τ). Modeling φ(t)

as the integral of frequency fluctuations Ω(t) whose PSD is denoted
SΩ(ω), we have that SΩ(ω) = ω2Sφ(ω), with Sφ(ω) denoting the
PSD of φ(t). We can express ξ(t, τ) as a function of frequency
fluctuations as

ξ(t, τ) =

∫ t+τ
t

Ω(t′)dt′, (7)

so that

σ2
ξ(τ) = E[ξ(t, τ)2]

=
2

π

∫ ∞

0

SΩ(ω)
1− cos(ωτ)

ω2
dω

=

∫ ∞

0

SΩ(2πf)
sin2(πfτ)

π2f2
df (8)

A detailed derivation of (8) can be found in [2]. A key point
resulting from the above is that 1st order differences in the phase
noise process φ(t) are equivalent to multiplication of the frequency
noise PSD SΩ(ω) with a sinc2 low pass filter (LPF) as far as the
evaluation of σ2

ξ(τ) is concerned.

3Related through the Hilbert Transform.

Based on this result, Chorti and Brookes were able to derive
closed-form expressions for the noise RP w(t) autocorrelation func-
tion Rww(τ) and its PSD4 Sw(ω) [2] in the following important
cases:

1. Phase modulated white phase noise with PSD k0. The noise
RP PSD Sw(ω) is a Dirac Delta weighted by 2πe−k0ωB/2,
whereωB is the bandwidth of the bandlimited white-like phase
noise, combined with a flat region with PSD k0 up to ωB .

2. Phase modulated approximately 1/f phase noise with PSD
k1/|f |1+ν , 0 < ν � 1. The noise RP PSD can be expressed
as the infinite sum of sub-spectra, in the form

Sw(ω) = 2πδ(ω) +

∞∑
n=1

Cn(ν, k1)|ω−1−nν | (9)

with

Cn(ν, k1) = (−1)n+1 2 sin(
πnν
2

)ν( 2γ1k1
ν

)nΓ(nν)

Γ(n)
(10)

where Γ(·) denotes the Gamma function. For sufficiently
small ν, the dominant sub-spectral term is for n = 1:

S̃w(ω) =
4 sin(πν

2
)γ1k1Γ(ν)

|ω1+ν | . (11)

More importantly, the value of the PSD on the carrier is finite
and equals:

Sw(0) = 8π
Γ( 1

ν
)

ν
ν

√
− Γ( 1+ν

2
)√

πk1Γ(− ν
2
)
. (12)

3. Frequency modulated white phase noise with PSD k2/f
2.

The oscillator is a Brownian motion process [12] with a Lorentzian
PSD.

4. Frequency modulated approximately 1/f phase noise with
PSD k3/|f |3−ν , 0 < ν � 1. The analysis of Klimovitch
[10] has shown that the near-carrier PSD can be approximated
by a Gaussian region followed by a 1/|f |3 region,

Sw(ω) =

√
2π√
K

e−
ω2
2K +

8π3k3

|ω|3 u(|ω| − ω3) (13)

with

K =
16π2√π(2π)−νΓ( ν

2
)k3

(2− ν)Γ( 3
2
− ν

2
)

. (14)

f3 is the frequency of transition from the Gaussian to the
power-law region and u(·) denotes the Heaviside function.

5. Frequency modulated random walk phase noise of PSD k4/f
4.

The oscillator PSD is a Gaussian in the near carrier frequen-
cies followed by a power-law region at the frequency of tran-
sition ω4:

Sw(ω) =

√
ρ

2π
√
πk4

e
− ρω2

16π4k4 +
16π4k4

ω4
u(|ω| − ω4) (15)

4The oscillator PSD Sζ(ω) can be obtained by convolution of
2πδ(ω − ωosc) with the PSD of the RP w(t).
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As noted above, time averages of 1st order phase noise differ-
ences appear naturally in the oscillator autocorrelation function, im-
posing a smoothing of the phase noise high frequency components.
Equivalently, the oscillator loop acts as a sinc2 low-pass filter (LPF)
for frequency fluctuation samples. As a result, under a joint Gaus-
sianity assumption for the phase noise samples, we are able to derive
closed-form expressions for the oscillator autocorrelation function
and PSD accounting for the main even order power-law phase noise
processes, k0, k2/f

2, k4/f
4.

However, in the case of 1/f phase noise (and the related 1/f 3),
the 1st order phase noise sample differences do not offer sufficient
smoothing for controlling the induced infinities and the related vari-
ance integrals explode to infinity. However, it was readily shown in
[2] and [10] that approximately 1/f and 1/f 3 phase noise is not in-
compatible with oscillator stationarity and that we can obtain closed-
form expressions for the relevant oscillator autocorrelation functions
and PSDs. Although such processes have infinite variance, the os-
cillator behavior as a limit cycle in the state space [4] can “absorb”
infinities of a rate close but not equal to 1/f . An interesting question
in that sense would be to identify the necessary degree of smoothing
of the 1/f phase noise in order to avoid the aforementioned infini-
ties; what kind of 1/f noise can be “absorbed” by the oscillator loop
before the latter becomes nonstationary?

3. RESOLVING INFINITIES IN THE CASE OF EXACTLY
1/F NOISE IN OSCILLATORS

In the previous section we have discussed how 1st order phase noise
sample differences or equivalently a sinc2 LPF of the frequency fluc-
tuations RP is not sufficient to avoid infinities in the case of exactly
1/f noise. As a result, 2nd order phase noise differences were used
in practise to produce a set of useful metrics such as the Allan vari-
ance.

In the following, we propose an equivalent approach by perform-
ing a smoothing of the RP Ω(t) of frequency fluctuations. As a re-
sult, a specific type of 1/f noise in oscillators will be examined. We
consider a phase noise process ψ(t) that is generated by frequency
fluctuations Ψ(t) by convolving Ω(t) with a rectangular time win-
dow of length 2T . This will result in a further sinc2 filtering of the
frequency fluctuations, that is analogous to 2nd order phase noise
sample differences, so that:

SΨ(f) = k1|f | sin
2(fT )

f2
(16)

which corresponds to

SΨ(ω) = 4π3k1
sin2(ωT )

|ω| (17)

for energy conservation while SΨ(ω) corresponds to the PSD of
Ψ(t). The process ξ(t, τ, T ) now depends on the length T of the
time window. Following a similar analysis to that included in sec-

tion II we obtain:

σ2
ξ(τ, T ) = E[ξ(t, τ, T )2]

=
2

π

∫ ∞

0

SΨ(ω)
1− cos(ωτ)

ω2
dω

=
2

π

∫ ∞

0

4π3k1
sin2(πfτ)

2π|f |
sin2(πfT )

4π2f2
d2πf

= 2k1

[
(τ + T )2 ln((τ + T )2)

+ (τ − T )2 ln((τ − T )2)

− 2τ2 ln(τ2)− 2T 2 ln(T 2)
]

(18)

The above expression for the variance of the phase noise vari-
ation RP is in agreement with experimental data that find an ap-
proximately quadratic dependence on τ [1]. Demir in [3] provides
a qualitative explanation of this quadratic dependence. However, it
is worth noting that the multiplication of the quadratic terms with a
logarithmic term weakens the possibility of obtaining a Lorentzian
PSD close to the carrier as proposed by Demir in [5]. In fact, in the
following we will see that it is the dependence of σ2

ξ(t, T ) on ln(τ2)
that provokes the 1/f behavior of the oscillator output at measurable
offset frequencies.

As depicted in (18) the variance of the process ξ(t, τ, T ) is a
function of τ, T . Without loss of generality we can obtain a sim-
plified expression if we set T = 1, that is if we scale “time” to
the length of the frequency fluctuations observation time window.
The expression for the oscillator phase noise autocorrelation func-
tion then becomes

Rww|T=1(τ) = exp(−2k1((τ + 1)2 ln((τ + 1)2

+ (τ − 1)2 ln((τ − 1)2))− 2τ2 ln(τ2)))

(19)

It is not possible to find the Fourier transform of the above ex-
pression analytically. An additional problem with the numerical cal-
culation of the PSD is that as stands above, Rww|T=1 is not a rapidly
decreasing function of time and the integration interval has to be
very large resulting into unreasonable computation times. However,
we can simplify things if we use the following reasoning; the near-
carrier PSD corresponds to the dominant components of Rww|T=1

as τ → ∞. Simply taking the limit of (19) as τ → ∞ is not useful
as the latter is null, as expected for any real autocorrelation function.
Nevertheless, we can isolate the terms including the effect of ln(τ 2)
if rewrite the variance of the RP ξ(t, τ) as

σ2
ξ|T=1(τ) = 2k1

[
(τ + 1)2 ln (τ2(1 + τ−1)2)

+ (τ − 1)2 ln (τ2(τ − τ−1)2)− 2τ2 ln (τ2)
]

= 2k1

[
(τ + 1)2 ln (τ2) + (τ − 1)2 ln (τ2)

− 2τ2 ln (τ2) + (τ + 1)2 ln ((1 + τ−1)2)

+ (τ − 1)2 ln ((1− τ−1)2)
]
. (20)

By approximating ln(·) with a 3-term Taylor series we find that

lim
τ→∞

(τ + 1)2 ln ((1 + τ−1)2) + (τ − 1)2 ln ((1− τ−1)2) = 6

(21)
We can therefore approximate (20) with

σ2
ξ|T=1(τ) = 2k1(2 ln(τ

2) + 6
)
= 2k1

(
ln(τ4) + 6) (22)
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Fig. 1. Estimated (points) k1/f
1−γ and theoretical (solid lines)

k1/f PSD of an oscillator with 1/f phase noise. From top to bottom
[k1 = 10−1, 10−2, 10−3, 10−4] Watt/rad.

and we obtain the following approximation for the autocorrelation
function for large τ

R̃ww(τ) = e−k1
(
ln(τ4)+6

)
(23)

The spectrum of (23) can be analytically found to be

S̃w(ω) =
e−6γ2−γ

√
πΓ( 1−γ

2
)

Γ( γ
2
)|ω|1−γ (24)

where
γ = 4k1 (25)

As k1 << 1, we can approximate

e−6γ2−γ � 1 (26)

Γ
(1− γ

2

) � √
π (27)

Γ
(γ
2

) � 2

γ
. (28)

Therefore (24) can be approximated as

S̃w(ω) � 2πk1

|ω|1−γ . (29)

Therefore, the oscillator is predicted to have an approximately k1/|f |
spectrum, as shown in Fig. 1.

The PSD is infinite on the carrier frequency, however, the oscil-
lator power around the carrier over a bandwidth 2ωB is finite as the
integral of (29) converges:

1

2π

∫ ωB
−ωB

S̃w(ω)dω =
1

2
ωγB (30)

As a result, 2nd order differences of 1/f phase noise samples pro-
vide the means of resolving infinities in flicker phase noise analysis.

4. CONCLUSIONS

In this paper we have studied the behavior of an oscillator with
“smoothed” 1/f phase noise. We have generated 1/f phase noise
from the integration of the convolution of frequency fluctuations
with a rectangular time window to generate the equivalent of 2nd
order differences in phase noise samples. An important conclusion
of our analysis is that when non-stationary flicker noise is observed
over a finite time window in the phase of a real oscillator, the result-
ing RP possesses finite power and is WSS. The exact spectrum can
be found as the sum of an approximately 1/f spectrum as expressed
in (24) and the Fourier transform of the deviation of (23) from (19).
It still remains a question how best to estimate this second term in
the spectrum, given that numerical calculations have to be extended
to very large time intervals.
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