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ABSTRACT
Frequency-selective autoregressive (AR) estimation is arous-
ing increasing interest. We propose herein a new method to
estimate the AR model from a reduced set of spectral sam-
ples. The proposed method is founded on the maximum like-
lihood criterion over the logarithmic spectral residue, and it is
implemented ef ciently with a multivariate Newton–Raphson
algorithm. Results over deterministic and stochastic scenarios
show its excellent performance.

Index Terms— Autoregressivemodel, frequency domain,
incomplete spectrum, maximum likelihood.

1. INTRODUCTION

Autoregressive (AR) modeling is a popular parametricmethod
for spectral analysis and prediction of stationary processes
[1]. An AR model is described by the difference equation

x[n] =

P∑
k=1

ak x[n− k] + e[n] (1)

where e[n] is usually considered a random stationary process,
ak are the AR coef cients (ARC) and P is the model order.
AR modeling exclusively in the spectral domain [2] is not

a common practice in time series analysis. However, in many
scenarios only the spectrum (or a subband) is available. In
most of the cases, the methodology has been the conversion
of the spectral samples to the time domain so that the ef -
cient autocorrelation method can be applied. As alternative
to that methodology, recent works [3] suggest more complex
procedures. However, all these approaches are not appropri-
ate when dealing with missing or corrupted spectral samples,
a problem that has not aroused yet enough interest.
This paper presents a novel method to estimate an AR

model directly from spectral samples associated to scattered
regions of the frequency domain. The proposed frequency
selective estimation method is based on a risk functional de-
rived following a maximum likelihood criterion over the log-
arithmic residue. This solution is achieved by a multivari-
ate Newton–Raphson algorithm, which here results in a cost-
ef cient implementation. The proposed method is validated
on stochastic and deterministic scenarios with simulations.

2. ANTECEDENT

The transfer function of the AR model in terms of its ARC
corresponds to the well-known expression

H(ejω) =

(
1−

P∑
k=1

ak e−jωk

)−1

. (2)

Let X̂(ejω) be the Fourier transformof a realization of the AR
process x̂[n] = w[n] x[n], wherew[n] is the analysis window.
Classically [2], the AR estimation from the spectral samples
X̂(ejω) corresponds to the minimization of functional 1

Jlin �

∫ π

−π

Λ(ω)
∣∣ε(ω)

∣∣2 dω (3)

where ε(ω) is the spectral residue

ε(ω) �
X̂(ejω)

H(ejω)
. (4)

The positive-valued spectral mask Λ(ω) is introduced here as
tentative way to weight/disregard untrustful spectral samples
(for instance, because corrupted by an additive interference).
The minimum of the functionalJlin (3) corresponds to the

zero of its gradient 2

∂Jlin

∂ak

= −�

∫
〈Λ〉

∣∣X̂(ω)
∣∣2 e−jωk

H(ejω)
∗ dω (5)

where ∗ denotes complex conjugate and � z = 1
2 (z + z∗). A

well-known property of this functional is its quadratic nature,
as the Hessian matrix reveals

∂2Jlin

∂a�∂ak

= �

∫
〈Λ〉

ejω(�−k)
∣∣X̂(ejω)

∣∣2 dω . (6)

Therefore, with the gradient vector and Hessian matrix this
quadratic problem can be solved in one step as follows

alin = −
(
∇2

a
Jlin

)−1
∇aJlin

∣∣∣
a=0

(7)

1This scenario does not take into account the spectral leakage or bias
caused by the windowing, an effect addressed carefully in [2].

2For the sake of simplicity in the notation, thereafter
�
〈Λ〉 F (ω) dω =

�
π

−π
Λ(ω) F (ω) dω, where F (ω) is a generic function of variable ω.
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where a = [a1, . . . , aP ]. Note that (7) is equivalent to the so-
lution obtained by the autocorrelation (Yule–Walker) method. 3
Thus, since the Hessian (6) is a Toeplitz matrix, the solution
(7) can be ef ciently obtained.
However, a major problem arises when analyzing the role

of the proposed spectral mask within the functional (3): if
Λ(ω′) is set to zero for a given frequency ω′ as mean to dis-
regard the corresponding spectral sample X̂(ejω′

), the re-
sulting effect is equivalent to setting that sample zero, i.e.,
X̂(ejω′

) ≡ 0. Given that absence of spectral information
does not imply the spectral energy to be equal to zero, the
solution provided by the minimization of Jlin in case of fre-
quency selective scenarios is clearly not appropriate.

3. MAXIMUM-LIKELIHOOD FUNCTIONAL

The maximum-likelihood (ML) dependence betweenH(ejω)
and the samples X̂(ejω) is given by

L � −

∫
〈Λ〉

log P
[
f
(
ε(ω)

)]
dω (8)

where f(x) is a continuous monotonously increasing func-
tion that maps the spectral residue ε(ω) into another scale,
and P[ ] denotes probability. In consequence, the statistics of
the residue f

(
ε(ω)

)
de ne the ML estimator, that is, the ML

estimation does not depend on the choice of the mapping f(ε)
as long as (8) is observed [6].
In case of the linear mapping f(x) = x, the transformed

residue corresponds to ε(ω), which is Gaussian (both real and
complex parts). According to (8), the ML functional should
be thus built with a squared loss (as Jlin (3) is in fact). How-
ever, since the presence of zero values in the spectral mask,
Λ(ω′) = 0 yields ε(ω′) ≡ 0, the equivalent residue is not
strictly Gaussian, and thus that functional does not result in
the ML estimation with incomplete spectra.
Let us consider the logarithmic transformation

f(ε) � log
|ε|2

η
(9)

where η is an additional parameter that accounts for the mean
energy of the residue. In order to build the ML functional (8)
based on the new logarithmic residue, its probability density
function (pdf) is required. This pdf results in 4

P
[
x
]
= exp (x− exp x) . (10)

This pdf is depicted in Fig. 1. By replacing (10) into (8), the
ML functional results in

Llog �

∫
〈Λ〉

|ε(ω)|2

η
− log

|ε(ω)|2

η
dω (11)

3The solution deviates from that of Yule–Walker method due to the men-
tioned spectral leakage caused by the windowing.

4The squared residue |ε(ω)|2/η is a chi-square random variable with two
degrees of freedom and variance one, whose pdf is exponential, P [x] =
e−xu(x). The logarithmic transformation (9) gives rise to the pdf in (10).
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Fig. 1. Probability density function of the log residue.

which after simpli cations turns out equivalent to

Llog ≡

∫
〈Λ〉

∣∣X̂(ejω)
∣∣2

η
∣∣H(ejω)

∣∣2 + log
(
η
∣∣H(ejω)

∣∣2) dω . (12)

This functional (12) is equal to theWhittle likelihood function
[4]. The work [5] has recently proposed that likelihood for
similar purposes. Unfortunately, that work does not provide
the arguments on the choice of the Whittle likelihood versus
the ML linear residue (3) for a frequency selective scenario.
In case of missing spectral samples, setting Λ(ω′) = 0

into the new functional (11) is also equivalent to setting the
term in the integral to zero, and thus

ε = log ε (13)

where ε = |ε(ω′)|
2
/η > 0. However, equation (13) has no

solution. Thus, a zero in the spectral mask does not imply
constraining the value of the residue ε(ω′) nor of the spectral
sample X̂(ejω′

). We can then conclude that, contrary to the
linear residual, the use of the spectral mask in (11) is suited to
represent missing spectral samples, or even to weight the im-
portance of each spectral sample in the nal estimation. This
fact will turn out essential for delivering accurate frequency
selective AR estimates.

3.1. Minimization Mechanism

It is clear that the proposed functional (11), or (12), is not
quadratic with respect to ak. Furthermore, the energy parame-
ter η is an additional degree of freedom in the problem. The
following iterative multivariate Newton–Raphson algorithm
is proposed as mechanism to reach the minimum of Llog

5

a
(ξ+1) = a

(ξ) −
(
∇2

a
Llog

)−1
∇aLlog

∣∣∣(ξ) (14a)

η(ξ+1) = η(ξ) −
(
∇2

ηLlog

)−1
∇ηLlog

∣∣∣(ξ) (14b)

5In fact, the solution of the quadratic functional Jlin, given by (7), corre-
sponds to a multivariate Newton–Raphson mechanism as well. In that case,
one single iteration suf ces to reach the solution.
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where ξ is iteration of the algorithm, and the numerator and
denominator of the update correspond to the gradient vec-
tor and Hessian matrix respectively. Note that the ARC a

and the energy η are updated independently from each other.
Although a global multivariate Newton–Raphson algorithm
could be also an option, as proven later the proposed update
(14) turns out to have interesting computational advantages.
The gradient vector results in

∂Llog

∂ak

= −�

∫
〈Λ〉

(
|ε(ω)|

2
− η
)

e−jωkH(ejω) dω (15)

and the Hessian matrix in 6

∂2Llog

∂a�∂ak

=
∂2Jlin

∂a�∂ak

+ η�

∫
〈Λ〉

e−jω(�+k)H(ejω)
2
dω . (16)

The update of the energy (14b) turns out

η(ξ+1) = η(ξ)

(
1 +

∫
〈Λ〉 |ε(ω)|

2
− η(ξ) dω∫

〈Λ〉 2|ε(ω)|2 − η(ξ) dω

)
. (17)

3.2. Ef cient Implementation

The Hessian (16) has been written accordingly so as to reveal
the differences with that of the linear residue minimization.
By inspecting the additional term, we can state
∫
〈Λ〉

e−jω(k+�)H(ejω)
2
dω ≡ h[n]∗h[n]∗λ[n]

∣∣∣
n=−k−�

(18)

where ∗ denotes convolution, and λ[n] and h[n] are the time-
domain counterpart of Λ(ω) and H(ejω) respectively. Since
h[n] corresponds to a real causal system, its value at negative
time instants, n = −(k + 	), is negligible, and thus so is (18).
The spectral mask Λ(ω) may contradict the previous state-
ment since λ[n] may be non-causal, but in any case the term
(18) is clearly much lower than the correlation-based term (6).
Thus, we can simplify the Hessian matrix as

∇2
a
Llog � ∇

2
a
Jlin . (19)

This simpli cation brings outstanding computational advan-
tages with respect to the initial mechanism: since the new
Hessian matrix (19) is a Toeplitz matrix, its inverse can be
very ef ciently computed.
The initialization of the algorithm plays an important role

for guaranteing functional convexity and thus converging to a
minimum. Let us not forget that although the applied Hessian
(19) is positive (semi)de nite, the convergence depends on
the actual Hessian and especially on the update of the energy
term η. Equations (16) and (17) clearly point out to the energy
term η as responsible to guarantee convexity in the problem.

6For the sake of clarity, both gradient (15) and Hessian (16) have been
multiplied by η, which clearly has no consequences in the update (14a).

In fact, η � 0 clearly makes the problem convex; on the other
hand very large values may compromise the stability. We ob-
served heuristically that the following initialization

η(0) =

∫
〈Λ〉

∣∣X̂(ejω)
∣∣2dω

/∫
〈Λ〉

dω (20)

yields fast convergence. Given the convexity of Hessian (16),
the initialization of ak was observed not being important. We
simply recommend initial zero-valued ARC.

4. SIMULATION RESULTS

The rst example addresses the AR estimation on a synthetic
harmonic deterministic signal. The signal was generated as
the output of an 8-order all-pole lter excited with a train of
periodic pulses. A short segment (384 samples) of the signal
was Hamming windowed, zero-padded to N = 512 samples,
Digital Fourier transformed, and thereof the energy of the har-
monics obtained. This last step is equivalent to setting

Λ(ω) =
∑

k

δ(ω − kωo) (21)

where δ(ω) is the Dirac delta, and ωo is the fundamental
frequency (estimated as shown in [7]). This scenario cor-
responds clearly to frequency selective estimation, in which
the spectral energy only at frequencies multiple of the funda-
mental ω = kωo is valuable. The analysis order was set to
P = 14, as is commonly used in speech coding. Fig. 2 con-
tains the results obtained with the proposed Llog minimiza-
tion and the classical approach (Jlin minimization) over two

0 0.5 1 1.5 2 2.5 3ω
a) ωo = 0.097

0 0.5 1 1.5 2 2.5 3ω

b) ωo = 0.193

Fig. 2. Estimation on synthetic speech: spectrum ( ne line),
envelope of Llog (solid) and Jlin (dashed) minimization. Y-
axis in log scale. At 8 kHz, it sounds as the /i/ utterance.

III  1003



0 0.5 1 1.5 2 2.5 3ω
a)

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 ω

b) Theoretical ··· , Llog — , Jlin - - - , and Λ(ω) = 1 · · · .

Fig. 3. Frequency selective estimation: a) valid spectral sam-
ples (thin) and noise-corrupted ones (dotted); b) comparative
by zooming on the second resonance. Y-axis in log scale.

different fundamental frequency cases. In both situations, the
classical method is unable to deliver an appropriate spectral
envelope (dashed). In case of wide-spaced harmonics, that so-
lution is largely inaccurate in terms of frequency and energy
of the resonance. On the contrary, the proposed Llog mini-
mization delivers an accurate “all-pole interpolation” (solid)
of the spectral harmonic energy. Furthermore, the result on
the wide-spaced harmonic case is outstanding: frequency and
level of each resonance are precisely identi ed, in spite of the
critically undersampled spectral envelope.
The second example deals with the estimation of a four-

order AR process corrupted with additive noise. The spectral
mask Λ(ω) plays an important role since it needs to be set
to one for clean spectral values and to zero in case of noisy
samples. The following simple adaptive procedure is used

Λ(ξ)(ω) �

{
1, if N(ejω) < η(ξ)

∣∣H(ξ)(ejω)
∣∣2

0, otherwise
. (22)

The previous procedure requires the knowledge of the power
spectral density N(ejω) of the additive noise, which is com-
pared against the current estimated spectral envelope. Fig. 3
shows the results of the method on this scenario. The solid
line in Fig. 3.a corresponds to the spectral envelope result-
ing from the proposed Llog minimization. In the same gure,
the spectral samples that turn out noise-free and the noise-
corrupted ones according to (22) are shown in thin-solid and
dotted line respectively.
The interpolation capability of the proposed method is

compared with other methods in Fig. 3.b. The Jlin minimiza-
tion (dashed) yields two poles (two peaks of the spectral enve-

lope) apart from each other and with a too high radius (closer
to unit circle) than the actual ones. This inaccurate result is
due to the noise-corrupted spectral regions which are actually
treated in the functional as zero-valued spectral samples. By
considering all samples as valid, i.e. Λ(ω) = 1, the resulting
spectral envelope (dotted) yields a one-pole resonance (no-
ticeable in the narrow bandwidth of the resonance) instead of
the actual two poles. On the contrary, the frequency selective
estimation resulting from the proposed Llog minimization is
close to the theoretical envelope. The number of iterations in
the Llog minimization for this example is twenty.

5. CONCLUSIONS

The use of the logarithmic spectral residue is essential for
achieving maximum-likelihood frequency-selective autoregr-
essive (AR) estimation. This paper has proven that fact and
proposed an iterative Newton mechanism that converges to
the solution. Since the Hessian matrix is Toeplitz, the algo-
rithm can be implemented ef ciently as to demand at each
iteration as low computational load as in the Yule–Walker
mechanism. The method is validated on two ill-posed sce-
narios in which a reduced set of the spectral samples is avail-
able: the AR estimation from the deterministic energy of har-
monics, and from a noise-corrupted stochastic process. The
comparison with the classical spectral AR analysis reveals the
excellent estimation accuracy of the proposed method.

6. REFERENCES

[1] B. Rust and D. Donelly, “The fast Fourier transform for
experimentalists, part IV: Autoregressive spectral analy-
sis,” Comp. Sci. & Eng., vol. 7, pp. 85–90, 2005.

[2] R. Pintelon and J. Schoukens, “Time series analysis in
the frequency domain,” IEEE Trans. Signal Processing,
vol. 47, pp. 206–210, 1999.

[3] P. M. T. Broersen and S. de Vaele, “Time series analysis
in a frequency subband,” IEEE Trans. Instrum. Meas.,
vol. 52, pp. 1054–1060, 2003.

[4] P. Whittle, “Gaussian estimation in stationary time se-
ries,” Bull. Intl. Stat. Instit., 39, pp. 105–130, 1961.

[5] J. Gillberg and F. Gustafsson, “Frequency-domain
continuous-time AR modeling using non-uniformly
sampled measurem.,” IEEE ICASSP 2005, pp. 105–108.

[6] B. Schölkopf and A. J. Smola. Learning with Kernels.
MIT Press, 2002.
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