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ABSTRACT

We propose con dence intervals for the conditional coher-
ence using the bootstrap. The asymptotic distribution of the
empirical conditional coherence is inaccurate when signal and
noise are non-Gaussian and/or the data size is small. The con-
dence intervals obtained with the bootstrap are shown to be

accurate, maintaining the preset level of con dence.

Index Terms— con dence intervals, conditional coher-
ence, conditional spectra, the bootstrap, non-Gaussian sig-
nals.

1. INTRODUCTION

Consider the situation of Figure 1, wherein S(t), U1(t) and
U2(t), t = 0,±1, . . . are jointly stationary processes with
spectral densities CSS(ω), CU1U1(ω), CU2U2(ω) and CU1U2(ω).
Assume that U1(t) and S(t) as well as S(t) and U2(t) are un-
correlated for all t = 0,±1, . . .. Assume further that h1(t)
and h2(t), t = 0,±1, . . . are impulse responses of linear time-
invariant stable lters with the respective frequency responses
H1(ω) and H2(ω), −∞ < ω < ∞.
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Fig. 1. Linear time-invariant lters driven by a stationary pro-
cess.

This situation is encountered in many applications, among
others, in wireless communications [1], sonar [2], bioscience [3],

speech processing [4], optics [5] and seismic exploration [6].
The conditional coherence is useful to determine if the high
magnitude squared coherence function of the measurements
Z1(t) and Z2(t) at a given frequency of interest is caused by
a third signal (or signals), S(t) in Figure 1. To appreciate the
importance of the concept of the conditional coherence func-
tion, we give below its expression for the scenario of Figure
1 and highlight the relationship with the magnitude squared
coherence function.

1.1. Preliminaries

Let the spectral density matrix of (S(t), Z1(t), Z2(t))′,⎛
⎝ CSS(ω) CSZ1(ω) CSZ2(ω)

CZ1S(ω) CZ1Z1(ω) CZ1Z2(ω)
CZ2S(ω) CZ2Z1(ω) CZ2Z2(ω)

⎞
⎠

be non-negative de nite for −∞ < ω < ∞. The magni-
tude squared coherence function (or simply the coherence) of
Zi(t), i = 1, 2 and S(t) at frequency ω is given by

|RZiS(ω)|2 =
|CZiS(ω)|2

CZiZi(ω)CSS(ω)
=

|Hi(ω)|2
|Hi(ω)|2 + CUiUi

(ω)

CSS(ω)

.

The coherence function of Zi(t) and S(t) measures the ex-
tent to which Zi(t), i = 1, 2 is determinable from S(t), t =
0,±1 . . ., at frequency ω by linear time-invariant operations
and is bounded between 0 and 1. The coherence of Z1(t) and
Z2(t) is de ned through

|RZ1Z2(ω)|2 =
|CZ1Z2(ω)|2

CZ1Z1(ω)CZ2Z2(ω)
,

and one can show the relationship given in Eq. (1) where
Re {z} is the real part of the complex-valued number z and
z denotes the complex conjugate of z. In the case where
U1(t) and U2(t) are uncorrelated for t = 0,±1, . . ., then
|RZ1Z2(ω)|2 ≡ |R̃Z1Z2(ω)|2 and under the condition that
CU1U1(ω) = CU2U2(ω) � CSS(ω) at frequency ω, the co-
herences |R̃Z1Z2(ω)|2, |RZ1S(ω)|2 and |RZ2S(ω)|2 are ap-
proximately 1.
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|RZ1Z2(ω)|2 = |R̃Z1Z2(ω)|2 +
|CU1U2(ω)|2 + 2 ·Re {H1(ω)H2(ω)CU1U2(ω)}CSS(ω)

|H1(ω)H2(ω)|2CSS(ω)2
{
1 + CU1U1 (ω)

|H1(ω)|2CSS(ω) + CU2U2 (ω)

|H2(ω)|2CSS(ω) + CU1U1 (ω)CU2U2 (ω)

|H1(ω)H2(ω)|2CSS(ω)2

} ,

(1)

|R̃Z1Z2(ω)|2 =
1

1 + CU1U1 (ω)

|H1(ω)|2CSS(ω) + CU2U2 (ω)

|H2(ω)|2CSS(ω) + CU1U1 (ω)CU2U2(ω)

|H1(ω)H2(ω)|2CSS(ω)2

,

The above results show that in the general case there could
be a high coherence of the signals Z1(t) and Z2(t), but this
coherence alone does not explain what caused the high value.
To explore this phenomenon, we consider the so-called con-
ditional coherence, also called the partial coherence [7, 8].

1.2. The Conditional Coherence

Consider the conditional spectra

CZ1Z1·S(ω) = (1− |RZ1S(ω)|2)CZ1Z1(ω)
CZ2Z2·S(ω) = (1− |RZ2S(ω)|2)CZ2Z2(ω)
CZ1Z2·S(ω) =

(
1− CZ1S(ω)CSZ2(ω)

CZ1Z2 (ω)CSS(ω)

)
CZ1Z2(ω) .

The conditional coherence is given by

|RZ1Z2·S(ω)|2 =
|CZ1Z2·S(ω)|2

CZ1Z1·S(ω)CZ2Z2·S(ω)
, (2)

which can be interpreted as the coherence of Z1(t) and Z2(t)
after removing the linear effects of S(t), t = 0,±1, . . .. The
conditional coherence is also bounded between 0 and 1.

In the model given in Figure 1 the conditional coherence
|RZ1Z2·S(ω)|2 is identical to |RU1U2(ω)|2, −∞ < ω < ∞,
where |RU1U2(ω)|2 is the coherence of U1(t) and U2(t) at
frequency ω. Consequently |RZ1Z2·S(ω)|2 ≡ 0 in the case
where U1(t) and U2(t) are uncorrelated for all t = 0,±1, . . ..
Thus, it is clear that the high coherence of Z1(t) and Z2(t)
is due to S(t), exciting the two linear time-invariant lters,
which can be shown with the conditional coherence only.

The objective of this study is to construct con dence in-
tervals for |RZ1Z2·S(ω)|2. We note that for the sake of sim-
plicity, we consider a scalar S(t), t = 0,±1, . . ., however an
extension to a vector-valued input is straightforward.

2. ESTIMATION OF THE CONDITIONAL
COHERENCE

We consider non-parametric estimation of spectra and cross-
spectra. Given independent data records Z1(t, l), Z2(t, l) and
S(t, l) for t = 0, . . . , T − 1 and l = 1, . . . , n, de ne for
for −∞ < ω < ∞ the nite Fourier transforms of the data
by dZi(ω, l) =

∑T−1
t=0 w(t/T ) Zi(t, l)e−jωt, i = 1, 2 and

dS(ω, l) =
∑T−1

t=0 w(t/T ) S(t, l)e−jωt , where w(t̃), t̃ ∈ R

is a window that is bounded, is of bounded variation and van-
ishes for |t̃| > 1. Let the estimates of the spectra and cross-
spectra CZiZi(ω), CZiS(ω) and CZ1Z2(ω) be ĈZiZi(ω), ĈZiS(ω)
for i = 1, 2 and ĈZ1Z2(ω), respectively and obtained by av-
eraging n periodograms. Estimates for the conditional coher-
ence are obtained by replacing true spectra and conditional
spectra in Eq. (2) by their estimates.

Under regularity conditions, which include strict station-
arity of the vector process (S(t), Z1(t), Z2(t))′, existence of
all moments and absolute summability of all k-th order cumu-
lant functions for all k = 2, 3, . . ., the asymptotic probability
density function (pdf) of |R̂Z1Z2·S |2 (omitting frequency ω)
is given by [8]

(n− 2)(1− |RZ1Z2·S|2)n−1(1− |R̂Z1Z2·S |2)n−3

2F1(n− 1, n− 1; 1; |RZ1Z2·S |2|R̂Z1Z2·S |2) , (3)

where 2F1(a, b; c; z) is the hypergeometric function. The asymp-
totic cumulative distribution function (cdf) is given by [8](

1− |RZ1Z2·S |2
1− |RZ1Z2·S|2|R̂Z1Z2·S |2

)n−1

|R̂Z1Z2·S |4

×
n−4∑
k=0

(
1− |R̂Z1Z2·S|2

1− |RZ1Z2·S |2|R̂Z1Z2·S |2

)k

(k + 1) · 2F1(−k, 3− n; 2; |RZ1Z2·S |2|R̂Z1Z2·S |2) .(4)

The pdf and cdf expressions are exact if the vector-valued pro-
cesses are assumed to be Gaussian distributed. The plot in
Figure 2 is an example where one can see the failure of the
asymptotic distribution of |R̂Z1Z2·S(ω)|2 in the case where
the signal and the noise processes are non-Gaussian. In the
gure we compare the density function of the empirical con-

ditional coherence in Eq. (3) and the one obtained using Monte
Carlo simulations. Herein, we chose H1(ω) = −1 + 2ejω +
ej2ω and H2(ω) = 2 + ejω (see Figure 1). One may use
Fisher’s z transform proposed by Enochson and Goodman
[9], with which one de nes the transformation R̆Z1Z2·S(ω) =
tanh −1|R̂Z1Z2·S(ω)| as an approximate normally distributed
random variate. Using this approximation an 100(1 − α)%
con dence interval for |RZ1Z2·S(ω)|2 can be readily obtained.
However, the Gaussian approximation also fails to accurately
estimate the distribution function of the empirical conditional
coherence when the data is non-Gaussian and in particular
when n is small.
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Fig. 2. Asymptotic density function of the conditional co-
herence (dotted line) vs. the density function obtained via
500 Monte Carlo simulations (dashed line). All processes are
jointly independent, Laplace distributed and T = 64, n = 10.

In what follows we approximate the distribution function
of |R̂Z1Z2·S(ω)|2 with the bootstrap to construct con dence
intervals. The approach is valid irrespective how large n is
and independent of the type of distribution of the processes
involved.

3. BOOTSTRAP CONFIDENCE INTERVALS

In a recent paper [10], we devised bootstrap con dence bounds
for the magnitude squared coherence function and compared
our results with those of a Gaussian approximation and a newly
developed iterative method. It was shown that the bootstrap
approach is superior as compared to the other two approxi-
mations. We follow a similar approach as in [10] to derive
bootstrap con dence intervals for the conditional coherence.

Bootstrapping coherences can be performed in two ways.
One approachwould be to explore the linear regression dZi(ω) =
Hi(ω)dS(ω) + dUi(ω), i = 1, 2 (omitting the error term
oa.s.(1), which tends to 0 almost surely as T →∞ [7]), esti-
mate Hi(ω) through Ĥi(ω) = ĈZiS(ω)/ĈSS(ω) and de ne
residuals dÛi

(ω) = dZi(ω)−Ĥi(ω)dS(ω), which are used for
resampling. This approach would enable us to replicate esti-
mates of R̂Z1Z2·S(ω) with the bootstrap and estimate con -
dence bounds. However, the approach relies on the model of
Figure 1. In the absence of any model, we propose the ap-
proach of Table 1, which makes use of the input-output data
only.

In Table 1, we used a variance stabilising transformationh
in order to get more accurate con dence intervals [11]. Its es-
timation is similar to what we proposed in [10]. It should also
be noted that in this particular case we could use the variance
stabilising Fisher’s z transform tanh −1, which would reduce
computations.

4. THE EXPERIMENT

We consider linear time-invariant (LTI) systems as depicted
in Figure 1, modeled by nite impulse response (FIR) l-

Table 1. The Bootstrap procedure.

Step 0. Data Collection. Conduct the experiment and cal-
culate the frequency data dS(ω, 1), . . . , dS(ω,n) and
dZi(ω, 1), . . . , dZi(ω,n) for i = 1, 2.

Step 1. Resampling. Using a pseudo random num-
ber generator, draw a random sample, X ∗(ω)
(of the same size), with replacement, from
X (ω) = {(dS(ω, 1), dZ1(ω, 1)), dZ2(ω, 1)) . . . ,
(dS(ω,n), dZ1(ω,n)dZ2(ω, n))}.

Step 2. Bootstrap Estimates. From X ∗(ω), calculate
|R̂∗Z1Z2·S(ω)|2, the bootstrap analogue of |R̂Z1Z2·S(ω)|2
estimated by replacing the estimates by their bootstrap coun-
terparts and form h(|R̂Z1Z2·S(ω)|2) and h(|R̂∗Z1Z2·S(ω)|2).

Step 3. Repetition. Repeat Steps 1-2 a large number of
times to obtain a total of N bootstrap statistics
|R̂∗1Z1Z2·S(ω)|2, . . . , |R̂∗NZ1Z2·S(ω)|2.

Step 4. Distribution Function Estimation. Sort the vari-
ance stabilised bootstrap estimates in increasing
order to obtain h(1)(|R̂∗Z1Z2·S(ω)|2) ≤ . . . ≤
h(N)(|R̂∗Z1Z2·S(ω)|2) and approximate the density function
of h(|R̂Z1Z2·S(ω)|2) − h(|RZ1Z2·S(ω)|2) by the density
function of h(|R̂∗Z1Z2·S(ω)|2)− h(|R̂Z1Z2·S(ω)|2).

Step 5. Con dence Bands Estimation. For a desired (1 − α)100%
bootstrap con dence interval, nd critical points of
the bootstrap distribution of h(|R̂∗Z1Z2·S(ω)|2) −
h(|R̂Z1Z2·S(ω)|2), h(q1)(|R̂∗Z1Z2·S(ω)|2) and
h(q2)|(R̂∗Z1Z2·S(ω)|2), say, where q1 = �(N + 1)α/2�
and q2 = N − q1 + 1. The con dence interval for
|RZ1Z2·S(ω)|2 is obtained as (h−1(h(|R̂Z1Z2·S(ω)|2) −
h(q2)|(R̂∗Z1Z2·S(ω)|2)), h−1(h(|R̂Z1Z2·S(ω)|2) −
h(q1)|(R̂∗Z1Z2·S(ω)|2)))

ters whose frequency transfer functions H1(ω) and H2(ω) are
given above. The LTI systems are driven by identically and
independently Laplace distributed noise S(t), with a constant
spectral density CSS(ω) = σ2

S = 1. Independent identically
and independently χ2

4 distributed noise U1(t) is added to the
output of the system with impulse response h1(t) to generate
Z1(t) (See Figure 1). The process U2(t) is obtained through
linear time-invariant ltering of U1(t). The lter used has the
frequency response HU (ω) = 1 − 0.5ejω + 1.5ej2ω. Inde-
pendent noise V (t) of a Gaussian is added to generate U2(t)
and SNRU1V = 0 dB.

We construct con dence intervals for the conditional co-
herence given above as follows. We generate independently
S(t, l) and Ui(t, l), t = 0, . . . , T − 1 for l = 1, . . . , n inde-
pendent data stretches. We lter S(t, l) with the linear time-
invariant systems with transfer functions H1(ω) and H2(ω),
add respectively Ui(t, l), to obtain Zi(t, l), i = 1, 2, t =
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0, . . . , T − 1 for l = 1, . . . , n. Then, we estimate the con-
ditional coherence. We compute con dence intervals using
the procedure described in Table 1. The results below use the
following parameters: α = 5%, N = 399, T = 64, n = 20,
(N1 = 100, N2 = 25 for the variance stabilising transforma-
tion), SNR = 0 dB. All results are based on 500 Monte Carlo
replications. Figure 3 shows the 95% con dence bounds ob-
tained with the bootstrap method.
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Fig. 3. True conditional coherence (solid) and estimated 95%
con dence bounds with the bootstrap (dashed) non-Gaussian
signal and noise.

In Figure 4, we show the lower and upper tail coverages as
well as the con dence level estimated using the bootstrap. It
can clearly be seen that the bootstrap approach maintains the
nominal level. Also, The coverage values averaged over all
frequencies are shown in Table 2. More experiments with dif-
ferent transfer functions have con rmed this property which
makes it more robust than the asymptotic approximation or
Fisher’s z transform in the absence of knowledge about the
probability distribution of signal and noise or when the num-
ber of data records is small.
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Fig. 4. Estimated lower and upper tail coverages and con -
dence level with the bootstrap (dashed) non-Gaussian signal
and noise. Dotted lines indicate nominal values.

5. CONCLUSIONS

The conditional coherence is an important tool in many appli-
cations such as sonar, wireless communications and seismic

Table 2. Lower and upper tails and con dence level for a
nominal 95% con dence interval over all frequencies

lower tail con dence upper tail
Bootstrap 0.0207 0.9273 0.052

exploration. We have considered estimation of con dence in-
tervals for the conditional coherence using the bootstrap. The
proposed method is more valid than the asymptotic approach
as it does neither assume a Gaussian distribution of signal
and noise nor does it require large data records. It has been
shown in an experiment that the approximation is accurate as
the nominal level of con dence is well maintained.
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