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ABSTRACT

In this paper, we extend the one-dimensional Capon-based
Magnitude Square Coherence (MSC) spectral estimator, to
form two-dimensional Capon- and APES-based MSC spec-
tral estimators. The resulting estimators are found to yield
signi cantly improved estimates as compared to the typical
Welch-based estimator. Furthermore, we introduce a compu-
tationally ef cient time-updating of the presented MSC esti-
mators, exploiting their inherent time-varying displacement
structure. The presented updating is found to dramatically
lower the computational requirement of reevaluating the MSC
spectral estimates.

Index Terms— Coherence estimation, spectral analysis,
multidimensional signal processing, displacement structure

1. INTRODUCTION

Spectral estimation nds applications in a wide range of elds,
and has received a vast amount of interest in the literature over
the last century. Due to their inherent robustness to model as-
sumptions, there has lately been a renewed interest in non-
parametric spectral estimators. Among the non-parametric
approaches, the data-dependent lterbank spectral estimators
have many desirable properties. In particular, there has been
a substantial interest in the Capon and the APES spectral es-
timators [1], which have been shown to offer very accurate,
computationally ef cient, high-resolution estimates (see, e.g.,
[2] and the many references therein). In this paper, we con-
sider the estimation of the Magnitude Square Coherence (MSC)
spectrum between two images. Even though the MSC spec-
trum is useful in a wide variety of applications, such as for
instance SAR imagery (see, e.g., [3, 4]), few methods exists
for forming an accurate high-resolution estimate of the spec-
trum. Recently, a one-dimensional (1-D) Capon-based MSC
estimator was introduced in [5]. As was shown in [5], the
Capon-based estimate offered a signi cantly improved reso-
lution as compared to the popular Welch’s method. Herein,
we extend this estimator to form both a 2-D Capon-based and
a 2-D APES-based MSC estimator. Furthermore, exploiting
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the time-varying displacement (TVD) structure of the pre-
sented estimators, we derive ef cient forward-backward av-
eraged (FBA), sliding window, time-updating algorithms for
these estimators (we refer the reader to [6] for a further dis-
cussion on displacement theory).

2. ESTIMATING THE MSC SPECTRUM

We de ne the 2-D MSC spectrum between two N × N̄ data
images x1(n, n̄) and x2(n, n̄) as (see, e.g., [3])

γω,ω̄ =
|φx1x2(ω, ω̄)|2

φx1x1(ω, ω̄)φx2x2(ω, ω̄)
, (1)

where φxkxp(ω, ω̄) denotes the 2-D cross-spectrum between
xk(n, n̄) and xp(n, n̄), de ned as

φxkxp(ω, ω̄) =
∞∑

l,l̄=−∞
rxkxp(l, l̄)e

−i(ωl+ω̄l̄), (2)

for k, p = 1, 2, with rxkxp(l, l̄) = E{xk(n, n̄)x∗p(n − l, n̄ −
l̄)}, and E{·} and (·)∗ denoting the expectation and the Her-
mitian, respectively. Forming the MM̄ × 1 vectorized sub-
matrices yk

l,t−l̄ = vec{Yk
l,t−l̄}with vec {X} denoting the op-

eration stacking the columns of the matrix X on top of each
other, from the data available at time t, where

Yk
l,l̄=

⎡
⎢⎣

xk(l, l̄ − M̄ + 1) . . . xk(l, l̄)
...

. . .
...

xk(l +M − 1, l̄ − M̄ + 1) . . . xk(l +M − 1, l̄)

⎤
⎥⎦

for l = 0, . . . , L−1, l̄ = 0, . . . , L̄−1, where L = N−M+1
and L̄ = N̄ − M̄ + 1, the 2-D Capon and APES lters1 may
be formed as (see, e.g., [2])

hCω,ω̄ =
R−1xkxkaω,ω̄

a∗ω,ω̄R
−1
xkxkaω,ω̄

, (3)

hAω,ω̄ =
Q−1xkxkaω,ω̄

a∗ω,ω̄Q
−1
xkxkaω,ω̄

, (4)

1We note that the form of the FBA APES lter will differ from the
forward-only APES lter. Herein, we consider the FBA version, formed us-
ing the noise covariance matrix estimate in (7).
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where aω,ω̄ = aω⊗ āω̄ , with⊗ denoting the Kronecker prod-
uct,

aω =
[
1 eiω . . . eiω(M−1)

]T
, (5)

āω̄ =
[
1 eiω̄ . . . eiω̄(M̄−1)

]T
, (6)

andRxkxp is the (scaled) covariance matrix of yk
l,l̄

, discussed
further below. Furthermore, Qxkxk is formed as an estimate
of the covariance matrix of all signal components at frequen-
cies different from (ω, ω̄), i.e., [1]

Qxkxk = Rxkxk −
1

2LL̄
[
gk ğk

] [ g∗k
ğ∗k

]
,

� Rxkxk −GkG∗k (7)

where

gk =
L−1∑
l=0

L̄−1∑
l̄=0

ykl,t−l̄e
−iωl−iω̄(L̄−1−l̄), (8)

ğk =
L−1∑
l=0

L̄−1∑
l̄=0

y̆kl,t−l̄e
−iωl−iω̄(L̄−1−l̄), (9)

with y̆k
l,l̄

denoting the (l, l̄)th backward data vector formed

similar to yk
l,l̄

, but from the backward data matrix (see, e.g.,
[1,2] for further details). It is worth noting thatQxkxk will de-
pend on (ω, ω̄). We proceed to form the corresponding spec-
tral estimates as the power of the lter output2, i.e.,

φxkxp(ω, ω̄) =
h∗xkRxkxphxp

LL̄
, (10)

where hxk denotes either of the lters in (3) or (4) formed
on the image xk(n, n̄), implying that the Capon- and APES-
based MSC estimates, formed from (1), can be expressed as

γCω,ω̄ =

∣∣∣a∗ω,ω̄R−1x1x1Rx1x2R
−1
x2x2aω,ω̄

∣∣∣2(
a∗ω,ω̄R

−1
x1x1aω,ω̄

) (
a∗ω,ω̄R

−1
x2x2aω,ω̄

) (11)

γAω,ω̄ =

∣∣∣a∗ω,ω̄Q−1x1x1Rx1x2Q
−1
x2x2aω,ω̄

∣∣∣2∏2
k=1 a

∗
ω,ω̄Q

−1
xkxkRxkxkQ

−1
xkxkaω,ω̄

(12)

Introducing
μk = Lxkaω,ω̄, (13)

where Lxk denotes the (unique) lower-triangular Cholesky
factor of R−1xkxk , such that R−1xkxk = L∗xkLxk , the Capon-
based MSC estimator in (11) can be expressed as

γCω,ω̄ =

∣∣∣μ∗1Lx1Rx1x2L
∗
x2μ2

∣∣∣2
|μ1|2 |μ2|2

. (14)

2We remark that the APES technique is commonly used to form the am-
plitude and phase spectral estimate. Herein, we prefer to form the APES
power spectral estimate. In general, these two estimates will differ.

Similarly, using the matrix inversion lemma to expand (7), as
well as exploiting that LxkRxkxkL

∗
xk

= IMM̄ , (12) can be
expressed as

γAω,ω̄ =

∣∣∣μ̆∗1Lx1Rx1x2L
∗
x2μ̆2

∣∣∣2
|μ̆1|2 |μ̆2|2

, (15)

where μ̆k = Φkμk,Φk = IMM̄+ν∗k [I2 − νkν
∗
k]
−1

νk, and

νk = G∗kL
∗
xk
, (16)

with IP denoting the P × P identity matrix. Parallelling [5],
we note that both (14) and (15) will be limited to 0 ≤ γω,ω̄ ≤
1. Further, from both (14) and (15), we note that the main
complexity in forming the estimates, for each frequency grid
point (ω, ω̄), will be in evaluating Lxk . We also remark that,
given the rich structure of these estimators, both will allow
for ef cient implementations using techniques similar to the
ones presented in [7] and [8]. Finally, we note that Rxkxk

and Rxkxp are typically unknown, and should therefore be
replaced by consistent estimates; herein, we use the FBA co-
variance matrix estimate to form R̂xkxk , as it is known to
yield preferable spectral estimates, i.e.,

R̂xkxk =
1
2

(
R̂f
xkxk

+ JR̂fT
xkxk

J
)
, (17)

where J denotes the exchange matrix, and

R̂f
xkxk

=
L−1∑
l=0

L̄−1∑
l̄=0

ykl,t−l̄ y
k∗
l,t−l̄. (18)

Similarly, R̂xkxp is formed using the forward-only estimate.
In the following section, we will proceed to examine how to
update the 2-D MSC estimates as additional data becomes
available.

3. TIME-UPDATING THE MSC ESTIMATES

Given the centrohermitian structure of Rxkxk , one may form
the decomposition [9], Rxkxk = KBxkxkK

∗, where K can
be selected to be column conjugate symmetric3 and unitary.
In particular, for even dimension Rxkxk ,

K =
1√
2

[
I iI
J −iJ

]
, (19)

where K is a square matrix with the same dimensions as
Rxkxk . Similarly, for odd dimension Rxkxk ,

K =
1√
2

⎡
⎣ I 0 iI

0 i
√
2 0

J 0 −iJ

⎤
⎦ . (20)

3A matrixK is said to be column conjugate symmetric ifK = JK∗.
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For this choice of K, Bxkxk is a real symmetric matrix. As
shown in [9], this decomposition offers a signi cant complex-
ity reduction for the most common operations on FBA covari-
ance matrices, such as the time-updating of Rxkxk . Let the
FBA covariance matrix estimate at time t be denoted Rt

xkxk
.

Then, the time-update, such that

R̂t
xkxk

= R̂t−1
xkxk

+ Ŷk
t Ŷ

k∗
t − Y̌k

t Y̌
k∗
t , (21)

where

Ŷk
t =

[
Yk,f
t JYk,f

t

]
(22)

Y̌k
t =

[
Yk,f

t−N̄ JYk,f

t−N̄
]

(23)

denote the updating and the downdating data matrices, re-
spectively, with

Yk,f
t =

[
yk0,t . . . ykL−1,t

]
, (24)

Yk,f

t−N̄ =
[
yk
0,t−N̄ . . . yk

L−1,t−N̄
]
, (25)

can preferably4 be formed as R̂t
xkxk

= KBt
xkxk

K∗, where

Bt
xkxk

= Bt−1
xkxk

+ Ẑkt Ẑ
kT
t − Žkt Ž

kT
t , (26)

with the compact updating and downdating data matrices

Ẑkt = K∗Ŷk
tV and Žkt = K∗Y̌k

tV, (27)

respectively, where K is determined from (19) or (20), and

V =
1√
2

[
I iI
I −iI

]
. (28)

It should be noted that the transforms in (27) imply that Zkt is
real-valued. Here, we are interested in updating (R̂t

xkxk
)−1.

Such an update can be formed using the TVD structure of
(26). A time-variant Toeplitz-likeMM̄×MM̄ matrixBt

xkxk
is said to have a TVD structure if the matrix difference∇Bt

xkxk
,

de ned by [6, 10]

∇Bt
xkxk

= Bt
xkxk

− FtBt−Δ
xkxk

F∗t , (29)

has low rank, say r(t), where r(t) � MM̄ , for some lower
triangular matrixFt. The TVD rank, r(t), provides a measure
of the degree of structure present, with lower rank indicating
stronger structure. Thus, if r(t) is close toMM̄ , there is little
point in pursuing the displacement framework. Combining
(29) with (26) implies that

∇Bt
xkxk

= Ẑkt Ẑ
kT
t − Žkt Ž

kT
t , (30)

where Δ = 1, Ft = I, and theMM̄×r(t)L̄ generator matrix
Ẑkt is used to updateBt

xkxk
and matrix Žkt is used to downdate

4The time-updating using (26) requires only about half the number of
operations compared to the update in (21).

Bt
xkxk

, respectively. Further, it can be seen that r(t) = 2L̄
for both the updating and downdating generator matrices. We
note that the positive-de nite nature of Bt

xkxk
guarantees the

existence of a unique lower triangular Cholesky factor, Ct,
such that Bt

xkxk
= CtCT

t , which, exploiting (30), can be
expressed in two stages as [10]

[
Ĉt 0

] [ ĈT
t

0

]
=
[
Ct−1 Ẑt

]
In+m

[
CT
t−1

ẐTt

]

where Ĉt represents the updated only Cholesky factor which
is then followed by the downdating process below

[
Ct 0

] [ CT
t

0

]
=
[
Ĉt Žt

] [ In 0
0 Im

] [
ĈT
t

ŽTt

]

in order to achieve both the up- and downdating (i.e., to effect
the sliding window) of the Cholesky factors of the compact
form of the FBA covariance estimate, Bt

xkxk
. Hence, it fol-

lows that there exists two [In⊕Im]-unitary rotation matrices5,
Γ̂t and Γ̌t, such that [10]

[
Ĉt 0

]
=
[
Ct−1 Ẑt

]
Γ̂t, (31)

and subsequently

[
Ct 0

]
=
[
Ĉt Žt

]
Γ̌t. (32)

Note that Γ̂t and Γ̌t have the effect of rotating the updating
generator matrices, Ẑt and Žt, onto the expressionsCt−1 and
Ĉt, respectively, to produce the up- and down dated Cholesky
factor Ct and block zero entries in the left-hand sides of (31)
and (32). The rotation matrices Γ̂t and Γ̌t can be formed
in numerous different ways. Generally, however, Givens ro-
tations are used for updating and Householder rotations for
down-dating. As shown in [10], this procedure can easily
be extended to also yield the inverse Cholesky factor; this
is achieved by augmenting (31) with the inverse Cholesky
factors according to [10]. By applying Γ̂t and Γ̌t, we thus
nd an ef cient time-updating (sliding window) of the in-

verse Cholesky factor also, yielding one column vector per
iteration. Using the updated inverse Cholesky factor, we form
the time-updated covariance matrix estimate, using Lxk =
KC−1t−1, in (13) and (16), where C−1t represent the Cholesky

factor of (R̂t
xkxk

)−1. Combined with the time-updating of

R̂xkxp , evaluated reminiscent to (21), this forms the proposed
time-updating algorithm. We nally remark that one may eas-
ily simplify the above time-updating to a exponential fading
data-updating only scheme by omitting the downdate rotation
and incorporating a forgetting factor.

5Here, a J-unitary matrix Θ is de ned as any matrix Θ such that
ΘJΘ∗ = J. Further, a ⊕ b denotes a matrix with the sub-matrices
a {n × n} and b {m × m} concatenated to produce a matrix of size
{(m+ n)× (m+ n)}.

III ­ 995



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Frequency

M
ag

ni
tu

de
Welch

Capon

APES

Fig. 1. MSC estimates for a 1-D data sequence.

4. NUMERICAL SIMULATIONS

For simplicity, we will initially assume two 1-D signals x1(n)
and x2(n) that are only sharing three sinusoidal components,

such that, xp(n) = Σ3
k=1α

(p)
k e

2πif
(p)
k n + wp(n), where α(p)k

and f (p)k denote the (complex) amplitude and frequency of the

kth sinusoid, of the pth signal, respectively. Here, α(1)k = 1,
∀k, f (1)1 = 0.2, f (1)2 = 0.35 and f (1)3 = 0.9. Further,

α
(2)
k = α

(1)
k e

2πiϑk , where ϑk is a uniformly distributed ran-
dom variable, between 0 and 2π. Finally, w1(n) and w2(n)
are two independent zero-mean circularly symmetric Gaus-
sian random processes with unit variance. For this exam-
ple, the theoretical MSC should be unity at the frequencies
fk, k = 1, 2, 3, and zero elsewhere. Figure 1 shows the
MSC estimates for the presented algorithms, as compared to
the standard Welch’s averaged periodogram technique, us-
ing N = 64 and M = 16. As is clear from the gure,
both the Capon- and APES-based MSC estimators offer es-
timates signi cantly closer the true values. As expected [11],
the APES-based estimator seems to offer a somewhat better
amplitude estimates, although at the cost of a slightly wider
peak, as compared to the Capon-based estimator. In the in-
terest of brevity, we merely note that the above comparisons
to the Welch-, Capon- and APES-based estimators will also
hold for 2-D data sets. Figure 2 illustrates a 2-D MSC es-
timate of sinusoidal data. For an extended treatment of the
2-D results including error propagation performance, please
see [12]. Finally, we examine the proposed time-updating of
the MSC estimators. The cost of directly evaluating Lxk is
aboutO(M3M̄3+LL̄M2M̄2) operations, including the cost
of evaluating (17). As a comparison, using the proposed time-
updating, Lxk can be found in aboutO(LM2M̄2) operations,
omitting the need to update Rxkxk directly. For larger im-
ages, it is clear that the proposed updating offers a substantial
complexity reduction as compared to the direct evaluation.
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Fig. 2. The Capon-based 2-D MSC estimate.
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