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ABSTRACT

Fractal dimension spectra have been used to characterize the
complexity of dynamical time series since the 1980s. Calcula-
tion of these spectra are traditionally based on fixed-size meth-
ods that are grid-based, such as the histogram technique, or
sample-based, such as the correlation-integral method. This pa-
per extends the Chhabra and Jensen direct approach on histogram-
binned data by deriving the direct calculation of the f(«) spec-
trum of scaling indices from correlation-integral based parti-
tion functions. That is, the canonical correlation-integral ap-
proach to f(«) is defined. The benefit of this novel method
is that the extended dynamical range of the correlation-integral
can be used to generate the compact f(«) spectrum from high-
dimensional embeddings without resorting to the Legendre trans-
form. A comparison of spectra results on the Ikeda attractor are
presented.

Index Terms— Fractals, Signal Analysis, Nonlinear Sys-
tems, Multidimensional Signal Processing

1. INTRODUCTION

The fractal dimension spectrum is an important invariant for
characterization of a dynamical attractor. It is a feature invari-
ant to smooth topological transformations induced by measure-
ment functions [1] and can be used as a distinguishing feature
for the comparison of models to data recorded from natural sys-
tems [2]. The scaling properties of dynamical attractors must
be characterized simultaneously by a multiplicity (or vector) of
fractal dimensions in order to capture the inhomogeneities in
the attractor density, and thus distinguish between a monofrac-
tal and a multifractal [1]. In particular, the scaling properties
of attractors defined by multiplicative cascades of finitely many
affine transformations are completely described by a fractal di-
mension spectrum [3].

1.1. Two Multifractal Spectra

A multifractal characterization is presented in one of two equiv-
alent fractal dimension spectra: (i) the Rényi fractal dimension
spectrum (RFDS), D, or (ii) the spectrum of scaling indices,
f(a), [4], which here is called the Mandelbrot fractal dimen-
sion spectrum (MFDS). The RFDS [4] is important because it
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(i) is the historic unification and extension of the various histor-
ical fractal dimensions defined previously by Mandelbrot and
others, (ii) has a geometric interpretation for positive integral ¢
regarding g-tuple correlations [5], and (iii) has the nice property
of existing in the L°°(R) function space. The second spectrum,
the MFDS [4], (i) describes a multifractal as a union of interwo-
ven monofractal sets, and therefore has a nicer interpretation,
and (ii) also provides a functional form with compact support.
Though the MFDS variables, e and f(c), have a nice inter-
pretation, Halsey ef al. considered them directly unobservable
and calculated them through the RFDS via a Legendre trans-
form identity [4]. Chhabra and Jensen [6] later derived a di-
rect form for the calculation of the MFDS, effectively describ-
ing a thermodynamic “canonical” form complementary to the
“microcanonical” approach of the RFDS. Via their method, the
MFDS variables, a(g) and f(a(q)), can be considered global
weighted averages of the local singular behaviour of the attrac-
tor measure.

1.2. Two Partitions

Fractal dimension spectra must be calculable from finite time
series data. Once the multidimensional points of the attractor
are reconstructed (likely by lag-embedding [7][2]), the frac-
tal dimension spectra are defined based on a partitioning of
the attractor according to, commonly, one of two different ap-
proaches. The first partitioning approach [8][2] is to use non-
overlapping fixed-size boxes. This effectively develops a his-
togram estimate (of size €) of the probability density function
for the attractor. The simplicity and speed of this approach
has made it quite natural for the origin and instruction of mul-
tifractal feature extraction. However, this method tends to be-
come impractical, especially for attractors embedded in high-
dimensional spaces [9].

Grassberger and Proccacia developed an independent par-
titioning approach based on the correlation-integral [10] which
uses overlapping fixed-sized cells centred on the sample points
of the attractor. Though the original implementation focused
solely on calculating Ds, Pawelzik and Schuster [11] gener-
alized the approach to calculate the entire RFDS. It has been
shown that the dynamic range of the correlation-integral method
outperforms the histogram method [2], and is the more popu-
lar approach in research. The complication of the correlation-
integral approach to partition calculation is the O(N?) algo-
rithm complexity and significant bias for ¢ < 1[12, Sec. 11.3.1].
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1.3. Incomplete Theory

The RFDS was developed initially for calculation using his-
togram partitioning [1], and was generalized for calculation us-
ing correlation-integral partitioning [11]. The MFDS was de-
veloped initially for calculation from the completed RFDS via
a transform (and therefore applies to either partitioning) [4],
and then generalized to a direct approach [6]. However, the
correlation-integral redefinition of the partition function inval-
idates the direct MFDS formula derived in [6]. As such, the
theory remains incomplete. Can a correlation-integral partition
be used to calculate f(«) directly?

This paper adds the missing piece to the “mosaic” of multi-
fractal theory by deriving a direct formula for the MFDS under
the assumption of a correlation-integral partition. This tech-
nique maintains the sound interpretation of the canonical ap-
proach, but allows the dynamical range of the correlation in-
tegral to enhance the calculation from finite data in higher-
dimensional embeddings.

The derivation of interest is performed in Sec. 3, after a
brief description of the formulae of the other methods in Sec. 2
for comparison. The new method is applied to the Ikeda at-
tractor in Sec. 4 and compared to the performance of the other
algorithms.

2. BACKGROUND

2.1. Attractor Characterization by Rényi Dimensions
2.1.1. Histogram Partitioning

Consider a dynamical attractor in R9, so that the natural mea-
sure p of the attractor acts as a functional on the subsets of
R<. By applying a fixed-size grid V of size ¢ > 0 onto R?, a
partition P of p is induced according to

Pu(o) = {0 = 453

From time series data drawn from the attractor by time-delay
reconstruction [7][2][12][8], this partition can be approximated
easily by the empirical frequency ratio,

vV € V(e)} (1)

P9 = = @)

where N is the total number of points drawn from the attractor
distribution and N; (e) is the number of points contained in the
cell V; of the grid V(€). The Rényi generalized entropy of order
q of the discrete partition is then, [13][14],

1
Hy = lfqlogzpf (3)
i
which is a generalization of Shannon entropy, Hsg, since [13][1]
3%%:%:*mem 4)

This feature of p is a function over g. Since the partition V is of

size e, it is also scale-dependent and should be written Hg(€).

The RFDS is the set of Hentschel and Proccaccia generalized

dimensions defined as the function D, : R — R such that
Hq(e)

Dq = lim log e

&)

As such, the general interpretation of the RFDS is that it quanti-
fies the exponential behaviour of Rényi’s generalized entropies
for the discrete probability measures induced by a scaling parti-
tion of the attractor. Nice interpretations exist for subsets of the
Dy, in particular for the capacity dimension ¢ = 0, the infor-
mation dimension ¢ = 1, and the correlation dimension ¢ = 2
(1z1.

To evaluate Dy, the limit is avoided and instead a scaling
region is determined in the right hand side of (5) by evaluat-
ing —H,(€) as a function of log(e). (Note that this requires
the evaluation of P, (€) by histogram binning at several scales)
Linear regions of this plot (similar to Fig. 1) indicate a scaling,
and the linear slope is extracted as an estimate for D,.

2.1.2. Correlation-Integral Partitioning

The Grassberger-Procaccia correlation-integral formalism uses
the interpretation

Sopi= pplV=¢ {pgq*)} 6)

to redefine the partition of the attractor measure p. Again con-
sidering an attractor in R?, a covering V(€) of overlapping balls
of size e centred on the known points x; of the attractor are
taken. These balls induce a discrete partition,

5 _ n(Vi)

Pute) = it = 403
but the Rényi entropies (3) have a revised form where the sum-
mation is replaced according to (6) [1][11]. The values for the
p; are estimated from the attractor data {x; } based on the num-
ber of points N; that appear in V; and are not temporally corre-
lated to the point x;. [15] That is, the points x;, |j — 1| < W
are discarded from p;, because the pair-correlation should be
based on the dynamics, and not temporal correlation. Refer-
ences [15][2][12] can provide insight into proper selection of
W. Itis clear however, that W > 1 is necessary, at least to dis-
card the self-counting of x; from p;. Since there are fewer valid
points, the normalization in the correlation-integral approach is
slightly different from (2)

Pie) = NNi_(EIZV

It is typical [11][5] to use the Heaviside function © to express
N; as

Vﬁ:Bm®eﬁ@} ™

(3

Ni(e)= > (e~ lx; —xill) ®

li—il=W

Finally, if the points on the attractor are the result of an er-
godic trajectory (i.e., a single initial condition) [11], each point
is equally likely under p (i.e., the density of the x; is the same
as the density of 1) and the expectation can use simple averag-
ing, and thus the result of Pawelzik and Schuster [11]

N
1 1 (g—
Haa—lqbg<N§ZﬁqD@Q (10)
i=1
. —H
D, = lim = e(€) an

is obtained. Again, experimental estimates are obtained by the
slope of a scaling region of (11).
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2.2. Attractor Characterization by f(«)

Given the RFDS D, vs. g, the MFDS (with its elegant multi-
fractal interpretation) can be calculated by the Legendre trans-
form [4] [2] as

0
o= _afq(l—Q)Dq (12)
fla) =qa+(1-q)Dy 13)

For the explanation of how the interpretation follows from the
derivation, consult references [4] [2].

2.3. Direct Canonical Approach to f(«)

Consider again, a histogram partition P, () = {pi(€)} of an
attractor in R? with measure w. Chhabra and Jensen [6] de-
rived their formula and its interpretation from an independent
set of first principles based on the Shannon entropies of a g-
ordered family of measures p;(q,€) = pi(e)/ >, pi(e). It
follows from this definition that their result must be consistent
with the Legendre transformations, where the derivative actions
pass inside the sums and limits. Alternatively, the Legendre
identities (12) and (13) can be exploited to obtain from (5) the
direct MFDS form

R P10
alq) = aq(l q) lim Tog e (14)
. 0 .
72% 1og687q10gzpi(€) as)
pl ©)
Eﬂo loge (¢) log pi(e) (16)
and
#(@) =qala) + (1 — g lim 22t a7
e—0 loge
TN | i (e)
7213(]) log e ( - 7 (E)qlogpl( €) — Zq(€)> (18)
EERTRN | pi(e) . pile)
= e ( DY ok Zq(€)> (19)

where (3) is used for substitution and Z; = 3, p{(e) is used
as shorthand. The MFDS relationship is then experimentally
determined by finding coincident scaling regions of the right
hand sides of (16) and (19) and using slopes to identify the
values for a(q) and f(gq). The MFDS is thus the parametric
relationship of o and f(«) via g.

3. DERIVATION

Now we are able to derive the novel direct MFDS formula-
tion from the correlation-integral partition. We follow the same
approach as Sec. 2.3, but utilize substitutions from Sec. 2.1.2.

Thus, it is clear that (12) and (13) require that

9 g log (% 22, 57V (0)
a(q) = — 8q(1fq)€h§g) Tog ¢
(20)

<N Z ~(‘1 1) ) (21)

i
= loge 8q

i (EVZZ(““)) @)
and
f(a) =qa(q) + (1 — g)x
liologd—q (NZM oY ) (23)
—lim 4 i B0 log pi(€) — log Z, (24)

e—0 lOgﬁN =1 Zq
N =(a-1) =q
D N Y A OIS 11 (0]
= lim — L log =% (25)
(5 s

0
«—0 loge Nszl 4 p

now using Z, = 3, p‘§q’” (¢)/N as shorthand. Equations
(22) and (25) are our main result. It is particularly important
to notice that the asymmetry in the exponents of the p; in (25)
as compared to the histogram case (19) which is completely
symmetric (having the form of a Shannon entropy).

4. EXPERIMENTAL RESULTS

We have applied the calculation of (22) and (25) to 96x 20
points drawn from the Ikeda map [12]. The real component of
the map was lag-embedded into R® with a lag of 1. The corre-
lation integral was evaluated using a box-assist method [12] on
the range 272 to 277 with the L>° metric. (The Theiler window
is negligible here because the Ikeda map produces uncorrelated
values.) Over the 3-octave scaling region shown in Fig. 1(a)
and (b), numerical fitting to a line produces a good slope esti-
mate for a(q) and f(q) for ¢ = (-2, ...,10). The parametri-
cally defined canonical correlation-integral MFDS is shown in
Fig. 1(c) (stars). The Legendre transform of the RFDS calcu-
lated via a correlation-integral partition is also shown (squares)
and is in agreement with the new approach.

5. CONCLUSIONS

This paper has derived the direct formula for the Mandelbrot
fractal dimension spectrum under the assumption of a correlation-

integral partition. This provides the missing “‘canonical correlation-

integral” approach to the mosaic of canonical multifractal the-
ory. This direct calculation of f(«) is suitable for application
to high-dimensional data and situations that benefit from the
dynamic range of the correlation-integral. Preliminary appli-
cation of the direct formula on a lag-embedding of the Ikeda
map has demonstrated an agreement with the Legendre trans-
form of the Rényi fractal dimension spectrum.
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Fig. 1. Ikeda Attractor Results: scaling plots of (a) a(q) vs.
loge, and (b) f(g) vs. loge over the scaling region ¢ €
[275,2723]. Approximating (22) and (25) by fitting the slopes
in (a) and (b) respectively, the MFDS is shown (stars) in (c).
This is in agreement with the legendre transform of the RFDS
(squares). The attractor is a 5-dimensional lag-embedding of
96 x 2'0 real points drawn from the Tkeda map.
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