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ABSTRACT

In this paper, a new technique for the estimation of the magni-
tude squared coherence (MSC) spectrum is proposed. The method is
based on the relationship between the MSC and the canonical corre-
lation analysis (CCA) of stationary time series. Particularly, the ca-
nonical correlations coincide asymptotically with the squared roots
of the MSC, which is exploited in the paper to obtain an estimate
of the MSC based on a reduced-rank version of the estimated co-
herence matrix. The proposed technique provides a higher spectral
resolution than the well-known Welch’s method, and it also avoids
the signal mismatch problem associated to the minimum variance
distortionless response (MVDR) based approach. Finally, the per-
formance of the proposed method is evaluated by means of some
numerical examples.

Index Terms— Magnitude squared coherence (MSC) spectrum,
cross-spectrum, canonical correlation analysis (CCA), coherence ma-
trix, reduced-rank estimation.

1. INTRODUCTION

The magnitude squared coherence (MSC) spectrum and the cross-
spectrum are very useful in a large variety of applications. For ins-
tance, the MSC provides a measure of the mutual information bet-
ween two signals [1]. However, only a reduced number of methods
have been proposed to estimate them [2, 3]. Specifically, the tech-
nique proposed in [2] is based on the well-known averaged perio-
dogram method [4], which can be interpreted as a bank of data and
frequency independent filters. On the other hand, the method propo-
sed in [3] is based on the direct application of the minimum variance
distortionless response (MVDR) approach [5], which provides a set
of data and frequency dependent analysis filters.

The main advantage of theMVDR based technique over the met-
hod proposed in [2] is its increased spectral resolution. However, the
MVDR analysis filters are independent of the cross-correlation bet-
ween the signals, and in some situations high spikes in non-sampled
frequencies could remain undetected. This drawback is exactly the
same as the well-known problem of direction of arrival (DOA) mis-
match [6], which arises in beamforming applications. Several so-
lutions to the DOA mismatch problem have been proposed in the
literature [7,8]; however, the estimation of the MSC usually requires
the evaluation of a large number of frequencies, which precludes the
direct application of these methods.

In this paper, the close relationship between canonical correla-
tion analysis (CCA) and the MSC spectrum is exploited to propose
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a new MSC and cross-spectrum estimator. Specifically, the propo-
sed technique is based on a reduced-rank version of the estimated
coherence matrix, which resembles the reduced-rank estimation te-
chniques proposed in [1,9–11]. Alternatively, this approach can also
be viewed as a subspace method where the signal and noise subspa-
ces correspond to the space of correlated and non-correlated signals,
respectively. The benefits of the proposed approach are twofold:
first, it reduces the noise in the estimates at the non-correlated fre-
quencies; and second, it provides a better spectral resolution than the
Welch’s method without introducing the signal cancelling problems
associated with the MVDR estimator. In the paper we also show that
the proposed MSC estimate can be written in terms of the discrete
Fourier transforms (DFT) of the main canonical vectors. Interestin-
gly, this can be interpreted as a set of data and frequency dependent
analysis filters which, unlike the MVDR based approach and its va-
riants [7], not only depend on the autocorrelation functions, but also
on the cross-correlation between the two signals. Finally, the per-
formance of the proposed technique is illustrated by means of some
simulation examples, which show that it outperforms the methods
in [2, 3].

2. CROSS-SPECTRUM ANDMSC SPECTRUM

Let us consider two stationary complex time series x1[n] and x2[n]
with Fourier representations

x1[n] ↔ X1(ω), x2[n] ↔ X2(ω), 0 ≤ ω < 2π.

Defining the stationary random vectors x1 = [x1[0], . . . , x1[n]]T

and x2 = [x2[0], . . . , x2[n]]T , whose dimensions increase without
bound as n → ∞, the associated infinite Toeplitz correlation matri-
ces have Fourier representations

Rxixi = E[xix
H
i ] ↔ Sxixi(ω) = |Xi(ω)|2 , i = 1, 2,

and the cross-spectrum Sx1x2(ω) between x1[n] and x2[n] at fre-
quency ω is defined as

Rx1x2 = E[x1x
H
2 ] ↔ Sx1x2(ω),

which satisfies |Sx1x2(ω)| ≤ |X1(ω)| |X2(ω)|, for all 0 ≤ ω <
2π. Finally, the magnitude squared coherence (MSC) spectrum is
defined as the ratio

γ2
x1x2(ω) =

|Sx1x2(ω)|2
|Sx1x1(ω)| |Sx2x2(ω)| ≤ 1,

and it provides a measure of the rate at which one signal brings in-
formation about the other [1].
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2.1. Welch’s and MVDR Estimates

In practical situations, the number of available samples of x1[n] and
x2[n] is limited and then, the cross-spectrum and the MSC spectrum
must be estimated. A first approach consists on the direct application
of the Welch’s averaged periodogram method [2, 4], which can be

used to obtain the estimates of the cross-correlation matrices, R̂xixj ,

from the vectors xi[n] = [xi[n], . . . , xi[n− L + 1]]T , where L is
the window length parameter. Using these estimates, and defining
the K Fourier vectors

fk =
1√
L

[
1 ejωk · · · ejωk(L−1)

]T

, k = 0, . . . ,K − 1,

with ωk = 2πk/K, we can estimate the cross-spectrum Ŝx1x2(ωk)

and the spectra functions Ŝx1x1(ωk), Ŝx2x2(ωk) as

Ŝxixj (ωk) = fH
k R̂xixj fk,

and, finally, the MSC spectrum is estimated as

γ̂2
x1x2(ωk) =

∣∣∣Ŝx1x2(ωk)
∣∣∣
2

∣∣∣Ŝx1x1(ωk)
∣∣∣
∣∣∣Ŝx2x2(ωk)

∣∣∣
. (1)

The main drawback of the averaged periodogram based method is
that the Fourier analysis filters fk are both data and frequency inde-
pendent [12], which can cause large interferences among different
frequencies due to spectral leakage. In order to avoid this problem,
in [3] the authors have proposed an estimator based on a minimum
variance distortionless response (MVDR) approach [5]. Basically,
the MVDR data dependent analysis filters gik, i = 1, 2, are desig-
ned to maintain a unit response at frequency ωk (i.e. fH

k gik = 1),

while minimizing the estimated output energy gH
ikR̂xixigik, where

the estimated correlation matrices are now obtained by simple ave-
raging

R̂xixj =
1

N

N−1∑
n=0

xi[n]xH
j [n], i, j = 1, 2, (2)

andN is the number of available data samples. Finally, the estimates
of the cross-spectrum and spectra functions are obtained as

Ŝxixj (ωk) = gH
ikR̂xixjgjk =

fH
k R̂−1

xixi
R̂xixj R̂

−1
xjxj

fk[
fH
k R̂−1

xixi fk
] [

fH
k R̂−1

xjxj fk
] ,

and the MSC is estimated by means of (1).

Although the MVDR approach improves the low spectral reso-
lution of the averaged periodogram based method, it suffers from a
signal mismatch problem. This means that a sinusoidal component
present in both signals (and therefore perfectly correlated) can be
cancelled if its frequency do not coincide with the frequency grid
given by ωk = 2πk/K. This drawback is the analogous of the well-
known problem of direction of arrival (DOA) mismatch, which is
encountered in beamforming applications [6, 7].

3. CANONICAL CORRELATION ANALYSIS

Canonical correlation analysis (CCA) is a well-known technique in
multivariate statistical analysis which has been widely used in com-
munications and statistical signal processing [1, 10, 11] problems.
Given two random vectors x1 ∈ C

L×1, x2 ∈ C
L×1, CCA can be

defined as the problem of finding two canonical vectors h1 ∈ C
L×1,

h2 ∈ C
L×1 maximizing the canonical correlation

λ = hH
1 Rx1x2h2,

and subject to the constraints hH
1 Rx1x1h1 = hH

2 Rx2x2h2 = 1.
This is the so-called main or first CCA solution. The procedure can

be generalized to obtain L CCA solutions h
(q)
1 , h

(q)
2 , λ(q), (q =

1, . . . , L) by imposing, for r = 1, . . . , q − 1, the additional ortho-
gonality constraints

h
(q)H
1 Rx1x1h

(r)
1 = h

(q)H
2 Rx2x2h

(r)
2 = h

(q)H
1 Rx1x2h

(r)
2 = 0.

Considering the cross-correlation matrix associated to the whi-
tened version of x1 and x2, which is known as the coherence matrix

Cx1x2 = R−1/2
x1x1 Rx1x2R

−1/2
x2x2 ,

and taking its singular value decomposition (SVD)Cx1x2 = F1ΛFH
2 ,

the CCA solutions are Λ = diag(λ(1), . . . , λ(L)), and

[
h

(1)
1 · · ·h(L)

1

]
= R−1/2

x1x1 F1,
[
h

(1)
2 · · ·h(L)

2

]
= R−1/2

x2x2 F2,

i.e., the canonical correlations are given by the singular values of the
coherence matrix, and the singular vectors can be interpreted as the
whitened canonical vectors.

Interestingly, when the random vectors x1 = [x1[0], . . . , x1[n]]T ,

x2 = [x2[0], . . . , x2[n]]T are associated to stationary time series,
and in the cases of n → ∞ [1], or circulant channels [9], the asso-
ciated whitened canonical vectors are the Fourier vectors fk, and the
MSC is given by the square of the canonical correlations. Nevert-
heless, in practical situations where the channel is not circulant and
only a finite number of samples is available, the canonical vectors do
not coincide with the Fourier vectors.

4. MSC ESTIMATE BASED ON REDUCED-RANK CCA

In this section we propose a new MSC estimator based on a low-
rank approximation of the coherence matrix. Moreover, we provide
an interpretation of the proposed estimator as a weighted sum of
the cross product between the Fourier transform of the canonical
vectors. Let us start by writing

γx1x2(ωk) = fH
k R−1/2

x1x1 Rx1x2R
−1/2
x2x2 fk = fH

k Cx1x2 fk,

and consider the SVD decomposition of the estimated coherence ma-
trix

Ĉx1x2 = R̂−1/2
x1x1 R̂x1x2R̂

−1/2
x2x2 = F̂1Λ̂F̂H

2 .

The basic idea of the estimator is to suppress the subspace asso-
ciated to the lowest canonical correlations, which spans those com-
ponents with low correlation and is more affected by estimation errors
due to finite sample size effects. The interesting point to stress is that
for MSC and cross-spectrum estimation the right coordinate system
for this truncation or subspace separation is the system of canonical
coordinates. In this way, the method resembles other reduced-rank
approaches based on canonical coordinates and used for coding, fil-
tering or estimation problems in [1, 9–11].

Specifically, we use a reduced-rank version of the coherence ma-
trix

C̃x1x2 = F̃1Λ̃F̃H
2 ,

where F̃i (i = 1, 2) contains the main p singular vectors in F̂i, and

Λ̃ is a diagonal matrix containing the p largest singular values in Λ̂.
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Fig. 1. MSC estimates for the first example. Nf = 5 common tones

located at sampled frequencies ωk = 2πk/K.

Thus, the estimated MSC is obtained from

γ̂x1x2(ωk) = fH
k C̃x1x2 fk. (3)

Finally, the estimate of the cross-spectrum based on the reduced-
rank coherence matrix is

Ŝx1x2(ωk) = fH
k R̂1/2

x1x1C̃x1x2R̂
1/2
x2x2 fk. (4)

For sinusoidal processes, the rank p is related to the number of
correlated complex exponentials. In a general case this value must be
selected from the canonical correlations analogously to other order
estimation methods used in parametric spectral analysis. We will
illustrate this point in the next section.

4.1. Interpretation of the Reduced-Rank Estimates

Let us rewrite (3) as

γ̂x1x2(ωk) =

p∑
q=1

λ̂(q)f̂
(q)
1 (ωk)f̂

(q)∗
2 (ωk),

where (·)∗ denotes the complex conjugate,

f̂
(q)
i =

[
f̂

(q)
i (ω0), . . . , f̂

(q)
i (ωK−1)

]T

, i = 1, 2,

is the discrete Fourier transform (DFT) of the q-th whitened canoni-
cal vector in F̂i, and λ̂(q) is the q-th estimated canonical correlation.
Thus, the proposed method for the estimation of the MSC can be
seen as a weighted sum of the products between the DFTs of the
estimated canonical vectors, where the weights are given by the es-
timated canonical correlations. Furthermore, taking (4) into account

and rewriting Ŝx1x2(ωk) = gH
1kR̂x1x2g2k, it is straightforward to

show that the new analysis filters for the estimation of the cross-
spectrum are given by

gik = R̂−1/2
xixi

F̃iF̃
H
i R̂1/2

xixi
fk, i = 1, 2,

where we can see that, unlike the MVDR based approaches, the
analysis filters not only depend on the two data signals, but also on
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Fig. 2. MSC estimates for the second example. Nf = 5 common

tones at non-sampled frequencies.

their cross-correlation.

5. SIMULATION RESULTS

In this section we evaluate the performance of the proposed esti-
mator, the averaged periodogram method [2, 4], and the MVDR ap-
proach proposed in [3]. In all the simulation examples, we have
considered N = 1024 data samples, the window length has been
selected as L = 100, and the MSC has been evaluated at K = 200
equispaced frequencies. The periodogram based method has been
tested with Hanning and rectangular windows with 50% overlap, and
the order of the CCA rank-reduction technique is p = 10.

In the two first examples, the signals are generated as

x1[n] = w1[n] +

Nf∑
i=1

cos(2πνin),

x2[n] = w2[n] +

Nf∑
i=1

cos(2πνin + φi),

where w1[n], w2[n] are two independent zero-mean and real Gaus-
sian random processes with unit variance, and the phases φi are ran-
dom. We have considered Nf = 5 common frequencies. The theo-
retical MSC should be equal to 1 at frequencies ν1, . . . , νNf and
zero at the others.

In the first example, the spectrum is exactly sampled at the com-
mon frequencies (ν1 = 0.05, ν2 = 0.06, ν3 = 0.07, ν4 = 0.08
and ν5 = 0.09). The MSC estimates are shown in Fig. 1, where we
can see that the best results are obtained by the proposed technique,
which eliminates the spurious correlations at the rest of frequencies;
and by the MVDR based approach, which provides the highest spec-
tral resolution.

In the second example, we consider a more realistic scenario
where the correlated frequencies do not coincide with the Fourier
grid. In particular, the common frequencies are located at ν1 =
0.083, ν2 = 0.182, ν3 = 0.205, ν4 = 0.316 and ν5 = 0.414. The
simulation results are shown in Fig. 2. As can be seen, the proposed
technique provides the best results whereas the performance of the
MVDR based approach is severely degraded, which is due to the
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Fig. 3. MSC estimates for the third example. Narrowband signal.

cancellation of most of the common frequencies. As pointed out
before, this problem is analogous to the DOA mismatch problem
encountered in beamforming [6, 7].

In the final example, the two signals are generated as

x1[n] = s[n] + w1[n], x2[n] = s[n] + w2[n],

where w1[n], w2[n] are two independent zero-mean and real Gaus-
sian random processes with unit variance, and the common signal
s[n] is a narrowband zero-mean real Gaussian process with unit va-
riance and passband between 0.1 and 0.15. It is easy to prove that
in this case the theoretical MSC is 1.1−2 = 0.8264 in the common
band and zero at the remaining frequencies. Fig. 3 shows the simu-
lation results in this case, where we can see that the reduced-rank
CCA approach provides the most accurate estimate.

Finally, Fig. 4 shows the 30 main squared canonical correlations
obtained in the previous examples. In all the examples the number
of dominant canonical correlations is 10, which justifies our election
of the order for the reduced-rank CCA technique.

6. CONCLUSIONS

In this paper we have proposed a new technique for the estimation of
the cross-spectrum and the magnitude squared coherence spectrum.
The proposed technique is based on a reduced-rank approximation
of the estimated coherence matrix. The method provides a higher
spectral resolution than the well-known averaged periodogram tech-
nique, and it avoids the problem of signal cancelling associated to the
minimum variance distortionless response approach. The obtained
results suggest that, like in other coding and filtering problems, the
right coordinate system to suppress the noise and the non-correlated
signals is the system of canonical coordinates. Further research li-
nes include the application of a weighted version of the proposed
technique, which can provide better results in situations where the
canonical correlations decay smoothly.
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