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ABSTRACT

This paper proposes a new blind source separation (BSS) technique
for underdetermined MIMO system using space-time-frequency dis-
tributions. The sparseness in time-frequency domain is exploited
for underdetermined BSS. The paper also proposed a new detection
technique for auto sources time-frequency points, which is incorpo-
rated into the BSS technique. The proposed BSS technique applica-
ble to the situations where sources time-frequency signatures over-
lap at certain points in time-frequency plane and even in situations
where there is source with multicomponent signal. In these situa-
tions, where time-frequency planes cannot be partitioned (masked)
into groups of fewer or equal number sources than antennas, the ex-
isting overdetermined time-frequency BSS techniques could not be
applied. Simulation results are included to show its effectiveness.

Index Terms— Time-frequency distributions, blind sources sep-
aration, MIMO systems, underdetermined system

1. INTRODUCTION

Blind source separation has been used in many applications, for ex-
ample in processing signal received by ill-calibrated antenna array
and separating different audio sounds in speech processing. BSS
for non-stationary signals were introduced in [1, 2]. They are based
on time-frequency (TF) method. However, they are only applicable
to determined or overdetermined system, where the original sources
are unmixed by multiplying inverse or pseudoinverse of the mix-
ing matrix to the received signal vector. BSS of underdetermined
system is a challenging problem even after blind identi cation of
the wide mixing matrix, because separating sources by the inversion
of the mixing matrix is impossible. Hence, obtaining the unmixed
source signals would require additional assumptions and steps. In
this paper, considering only non-stationary signals, the sparseness
of the signal in time-frequency (TF) domain could be exploited for
underdetermined BSS. The methods in [1, 2] could be extended for
the underdetermined system under condition that the signals’ signa-
tures in the TF plane could be masked or partitioned into groups,
so that each group contains fewer or equal number of signals than
antenna sensors. Following masking or partitioning, the BSS tech-
niques [1, 2] are then applied to each of the partitioned group. In
addition, there are some extra algorithmic steps that are essential to
mitigate the cross-terms (CTs) between groups. In this paper we
proposed a method for source separation of underdetermined system
with possibility that signal signatures in TF plane is non-disjoint, in
which the above mentioned extended BSS technique is inapplicable.

Authors in [3] proposed to mitigate BSS problem with disjoint
signal signatures in TF plane. The algorithm uses clustering algo-
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rithm and exploits the spatial time-frequency distribution (STFD) [2]
structure at single auto points (SAPs), i.e. the location in TF plane
where individual source exists alone. Also, the same algorithm was
applied to signals with few overlappings in their TF signatures, and
it performs well except at the multiple auto points (MAP), i.e. the TF
location where time-frequency distributions (TFDs) of two or more
sources intersect [3]. In [4], the authors proposed a new subspace-
based algorithm to perform separation on both SAPs and MAPs, as-
suming at MAPs less number sources that overlaps than number of
sensors. However application of this subspace-based algorithm to
each points of SAPs and MAPs all together could be expensive.

In this paper, we proposed a separation technique that relies
on pseudoinverse of the virtual array structure [5] of the vectorized
STFD matrices of SAPs. It assumed that the mixing matrix is ob-
tained through other means, such as [8]. In this paper we also extend
the method in [4] to be applied to cross points (CPs). The CPs are
the locations of CTs. In addition to that, we also proposed a new
method for selecting mixtures of CPs and MAPs. With the mixture
of MAPs and CPs selected, STFD matrices at these TF points are
processed similar to [4], but at the lower computational cost due to
less points processed, because only MAPs and CPs, not SAPs, are
processed. Due to lower computation cost and extensibility of sub-
space method, we have the luxury to use Wigner-Ville (WV)-based
STFD. WV-based STFD has many unsuppressed CTs, which are ad-
vantageous for source synthesis of multicomponent signal from any
single source, such as in audio sources that contain harmonic.

2. SIGNAL MODEL

Assume instantaneous mixing matrix A � [a1,a2,. . ., aK ] with M
sensors and K narrow band signals impinging on them. Since we
are dealing with underdetermined system, threfore K > M . It is
also assumed any M columns of A are linearly independent. The
received signal is modeled as

x(t) � As(t) + w(t), (1)

where w(t) is the M×1 vector of additive noise. The vector s(t) �
[s1(t), . . . , sK(t)]T is source signal vector of size K×1 and each
of si(t) is a non-stationary source signal. Without loss of generality,
the rst row of A is assumed real-valued and each column of A is
normalized. This is to provide uniqueness in estimating mixing ma-
trix. Before looking into sources assumptions, we rst de ne spatial
time-frequency distribution of the received signals, x(t), as follows:

Dxx(t,f) �
∞X

l=−∞

∞X
m=−∞

φ(m,l)x(t+m+l)xH(t+m−l)e−j4πfl (2)

where φ(m, l) is the TFD time-lag kernel which is applied to all re-
ceived sensors equally and (·)H denotes Hermitian transpose. There
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are various TFD time-lag kernels to be chosen from, depending on
how the cross terms to be suppressed. Assuming no noise for now,
which is also a practical assumption because noise power will spread
out evenly on the TF plane, the received signal’s STFD is related to
the source signal’s STFD, Dss(t,f), in the following way,

Dxx(t, f) = ADss(t, f)AH (3)

Basically, elements of the STFDs, e.g. [Dss(t, f)]i,j �Dsisj(t, f)=P
l

P
mφ(m,l)si(t+m+l)s∗j(t+m−l)e−j4πfl, is an auto-TFD (if

i=j) or cross-TFD (if i �=j).

De nition 1 The two sources, si(t) and sj(t), are disjoint if and
only ifΩi ∩ Ωj = ∅, where Ωk is the TF support1 of the source k’s
TFD. Conversely, the two sources are called non-disjoint.

De nition 2 Suppose that two sources, si(t) and sj(t), are non-
disjoint, then (t, f) ∈ {Ωi∩Ωi} is called MAP. The (t, f) ∈ {(Ωi∪
Ωj) − (Ωi ∩ Ωi)} is called SAP (regardless sources are disjoint or
not).

Source signals in this paper are allowed to be disjoint or non-disjoint.
It is assumed that SAPs of each source exists, which is the require-
ment for estimation of A. We further assumed that at most M − 1
sources intersect at any MAPs, i.e. Ωi1 ∩Ωi2 ∩ . . . ∩ΩiM = ∅ for
any sets of M sources. This assumption is essential for estimating
TFDs of sources at MAPs. Before we proceed to the next section,
we de ne the following,

De nition 3 The (t, f) point such that Dsisj(t, f) �= 0, for i �= j,
and is not a MAP, is de ned as CP. The Dsisj(t, f) both evaluated at
CP and at MAP is called CT.

It is important to note that, CP and CT in de nition above are due to
two sources. In TF literatures, CT also arises due to multicomponent
signal within one source, however, it will appear at SAPs. From
now on, unless it is speci cally mentioned, CP and CT refer to the
de nition above and CT due to multicomponent signal is processed
the same as processing STFD at SAPs.

3. SELECTION OF TIME-FREQUENCY POINTS

3.1. Properties of STFDs at SAP, MAP and CP

Firstly, we will look at the property of STFDs at SAPs. It has been
studied in [6] that Dss(t, f) will have a diagonal structure only at
SAPs. In fact, only at the i-th diagonal element where Dsisi(t, f) is
non-zero, the rest of the entries are zero. Hence, Eqn. (3) becomes
Dxx(t,f) = Adiag{[0. . . ,0,Dsisi(t,f),0,. . .0]}AH = aia

H
i Dsisi(t,f),

which is rank one and semi-positive de nite due to positiveness of
Dsisi(t,f). Note that CT due to multicomponent signal will have this
property as well. Secondly, we will look at the property of Dss(t, f)
at MAPs. In general Dss(t, f) at MAPs are not diagonal because the
CTs at MAPs are non-zeros. The rank{Dss(t,f)}=rank{Dxx(t,f)}
=k if it is MAP of k sources, i.e. (t, f) ∈ {Ωi1 ∩Ωi2 ∩ . . . Ωik}. In
addition to that STFDs at MAPs are in general Hermitian symmetric
inde nite. Lastly, we study the property of Dss(t, f) at CPs. It
will have off-diagonal entries only, because only CTs are non-zeros.
The rank{Dss(t,f)} = rank{Dxx(t,f)} = k if there are CTs of k
sources. Note that, regardless of the kernel, CTs near and at MAPs
are dif cult to be suppressed without suppressing the signal’s TFD
itself. We will see how these CPs would not affect the performance
of the source separation in the section 4. This gives the exibility to
use the original WV distribution without any suppression of CTs.

1Assume source si(t) has TFD, Dsi,si(t,f), then its TF support is Ωi, if
and only if ∀(t, f) ∈ Ωi, Dsi,si(t,f) �= 0.

3.2. TF points for blind identi cation

Although, this paper does not propose new identi cation method,
we discuss brie y the method of selecting TF points for blind iden-
ti cation algorithms, such as [8]. The objective is to have suf cient
TF points such that their STFDs posses diagonal form. This implies
STFDs at SAPs posses this property. Since, only suf cient and small
numbers of SAPs are needed for blind identi cation, one could use
detection scheme that has low error probability in detection of SAPs,
such as [6]. This also lowers the computation cost of blind identi -
cation due to less STFDs being processed.

4. UNDERDETERMINED SOURCE SEPARATION

4.1. Overview

The objective of source separation is to estimate individual source
signals (in time domain). However, if one has the source’s TFD, one
could invert it uniquely, up to a complex constant, to yield source
signal in time domain [7]. Thus, estimation of sources’ TFDs from
STFDs is the main issue in this paper. Initially, TF points that con-
sist noise only need to be ignored and their TFDs to be zeroed out.
This is called noise-thresholding. Following that TF points that left
could be either SAPs or MAPs or CPs. Here, we proposed method
to treat STFDs at SAPs to obtain individual source’s TFDs at SAPs.
Apparently, the separation method also prompted a new method to
separate SAPs from MAPs and CPs. Now, only STFDs at MAPs
and CPs are untreated yet. Subspace method, which are originally
meant for TFD separation at MAPs and SAPs only [4], are analyzed
at CPs and then its property are exploited to process STFDs at mix-
ture of MAPs and CPs that remained from previous step. Finally,
one could form individual TFDs at SAPs, MAPs and CPs (the other
TF points are zeros after noise-thresholding) and inverting them to
obtain estimated sources’ signal in time domain.

4.2. Proposed simultaneous TFDs separation at SAPs

Preceding any processing, the noise-thresholding is performed and
could be done by selecting TF points that satisfy the following,

trace{Dxx(t, f)} ≥ ε1mean
(t,f)

{trace{Dxx(t, f)}} (4)

where value of ε1 typically is 1 (see [6]). Following the noise-
thresholding, blind identi cation of A is performed as discussed in
subsection 3.2. Thereafter, the proposed source separation algorithm
is performed on SAPs, in which method of selecting SAPs and mix-
ture of MAPs and CPs will be shown in next subsection. The algo-
rithm exploits the diagonal structure at SAPs, and hence, by vector-
izing Eqn. (3), it would gives

y(t, f) � vec{Dxx(t, f)} = (A∗ �A)z(t, f) (5)

where z(t, f) � diag{Dss(t, f)} is the vector that contain diagonal
entries of sources STFD, and� is the Khatri-Rao product (see [10]).
Note that the size of the virtual array, A∗ �A, is M2 ×K. Even
when M < K, the condition M2 > K is easily achievable to form
full rank virtual array matrix [5], and hence solving for z(t, f) in
Eqn (5) is the full-rank (overdetermined) least square problem now.
For example, with only three sensors, it is possible to do separation
of TFDs up to eight sources at SAPs. Mathematically, the estimate
of separated TFDs at SAPs is just

ẑ(t, f) = (Â∗ � Â)†y(t, f) (6)
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where (Â∗�Â)† is pseudoinverse of the virtual array in this full-rank
least square case, i.e. (Â∗ � Â)† = [(Â∗ � Â)H(Â∗ � Â)]−1(Â∗ �
Â)H . Note also, one could stack y(t, f) from different SAPs column-
wise into matrix Y, and hence batch processes it to obtain the stacked
ẑ(t, f) from different SAPs, Ẑ, just by one matrix multiplication, i.e.
Ẑ = (Â∗ � Â)†Y.

4.3. Proposed detection of SAPs and mixture of MAPs and CPs

Now, suppose that pseudoinverse of the virtual array is applied to
the vectorized STFD matrix at MAPs or CPs as in Eqn. (6), then it
will lead to the following equation

ẑ(t, f) = (Â∗ � Â)†(Ã∗ ⊗ Ã)v(t, f) (7)

where ⊗ is the Kronecker product and without lost of generality, we
have assumed the MAPs or CPs are the points overlap of the rst
K′ sources, and hence Ã � [a1, . . . , aK′ ] and the vectorized non-
diagonal K′-sources’ STFD matrix at MAPs or CPs is v(t, f) �
vec{D̃ss(t, f)}. The Kronecker product arises due to non-diagonal
structure of the sources’ STFD at MAPs and CPs. Assuming perfect
estimation of A, some of the columns of virtual array A∗� A =
[a∗1 ⊗ a1,a

∗
2 ⊗ a2, . . . , a

∗
K ⊗ aK ] are contained in A∗ ⊗ A =

[a∗1 ⊗ a1,a
∗
1 ⊗ a2, . . . , a

∗
1 ⊗ aK′ , . . . , a∗K′⊗ aK′ ]. This leads to

(A∗ �A)†(A∗ ⊗A) = [e1, �, . . . , �, e2, �, . . . , �, eK′ ] (8)

where �’s are arbitrary column vectors and ek =[0, . . . ,0, 1, 0,. . . 0]T

is vector with all elements are zeros except at the k-th row. At every
k2-th column of the result of post-multiplication with pseudo-inverse
above in Eqn. (8) gives ek. Substituting Eqn. (8) into Eqn. (7) gives

ẑ(t, f) =

2
6664

Ds1s1(t, f) + cross terms
Ds2s2(t, f) + cross terms

...
DsK′sK′ (t, f) + cross terms

3
7775 (9)

at MAPs and similarly for CPs except that Dsksk (t, f) = 0 for all
k. This prompts a new way of selecting MAPs and CPs out from
the mixture of MAPs, CPs and SAPs. Keep (t, f) as SAPs and
maxi{ẑi(t, f)} as D̂simaxsimax

(t,f) if,

maxi{ẑi(t, f)}P
i |ẑi(t, f)| ≥ 1− ε2, (10)

otherwise keep (t, f) as mixture of MAPs and CPs. Here, ẑi(t, f)
is the i-th element of ẑi(t, f) and imax is the index that maximizes
numerator of the Eqn (10). The ε2 is chosen to be small value less
than 1, typically can be chosen 0.1 ∼ 0.5. We will see in the next
subsection the reason that this value are not that critical.

4.4. Subspace method and its properties at MAPs and CPs

Originally, subspace method is intended for SAPs and MAPs not
CPs as in [4]. However, here we will show that it is applicable at
CPs as well. This means suppression of CTs are not that crucial. An-
other advantage when dealing with a source with multicomponent
signal is in estimating its original TFD that contains CTs. Hence
suppressing CTs in this case is disadvantageous. This also means
choice of ε2 are not that crucial as well since all SAPs, MAPs and
CPs could be processed by subspace method. But the subspace algo-
rithm processes STFDs at each TF points and hence computationally
expensive. Thus, processing more SAPs by the proposed method in

subsection 4.2 could reduce the computational load due to its batch
processing nature in Eqn. (6).

Now, we will observe the property of subspace method at MPs
and CPs. It is assumed that the number of sources signal involved in
the CT at CPs, K′, are less than M−1, which is the same assumption
for MAPs taken previously. Thus, at any MPs or CPs, we perform
the eigenvalue decomposition to obtain the subspace of Ã,

Dxx(t, f) = ÃD̃ss(t, f)Ã = UΛUH (11)

where U corresponds to the K′ largest magnitude of the eigenval-
ues. Magnitude is of eigenvalues is used due to the Hermitian sym-
metric inde niteness of MPs and CPs. Next, Ã could be identi ed
by

Ã = min
{i1,...,iK′}

‖(I−UUH)ai‖ (12)

which, basically nding a set of K ai’s, which is obtained from
Â, such that their orthogonal projection to subspace of Ã are min-
imized. Following that, the TFDs at the MAPs or CPs could be
extracted from the diagonal elements of the following,

D̃ss(t, f) = Ã†Dxx(t, f)(Ã†)H (13)

If it is STFD of CPs, then the diagonal entries will be small near to
zero. This is the property at allow the subspace method to be applied
to STFDs at CPs. Note that CT due to multicomponent signal will
not be zero because it has the spatial structure of STFDs at SAPs as
mentioned in previous section.

4.5. Synthesis of sources
Finally the source separated TFDs could be formed as follows,

D̂srsr (t, f) =

8<
:

ẑr(t, f) at SAPs by (6)
D̃sir sir

(t, f) at MAPs/CPs by (13)
0 elsewhere

(14)

where the all the STFDs used in the algorithm is chosen to be Wigner-
Ville-based (WV) or Modi ed WV-based (MWV) [9], which is needed
in order to perform the inversion. Finally, sources signals could be
synthesized from the separated TFDs, by inverting the WVD as fol-
lows, si(t) = 1

s∗i (0)

R∞
−∞Dsisi(

t
2
, f)ej2πftdf where its discrete

time implementation could be found in [7]. It is also noteworthy to
use WVD rather than MWVD in the case that sources multicompo-
nent signal, because MWVD suppress the CTs while WVD does not.
The algorithm is summarized in the following box

Table 1. Summary of the new STFD-based underdetermined BSS

Given sensors output x(n)
1. Compute WV-based or MWV-based STFD in Eqn. (2)
2. Noise thresholding using Eqn. (4) to obtain signals’ TF points
3. Select STFDs at SAPs by [6] and estimate A by [8]
4. Separate MAPs/CPs from SAPs for BSS by applying Eqn. (6)
and (10) to the STFDs at signals’ TF points obtained from step 2
6. Obtain source separated TFDs at SAPs using maxi ẑi(t, f)
7. Obtain TFDs at MAPs/CPs using Eqn. (11), (12) and (13)
8. Form source separated TFDs as in Eqn. (14)
9. Synthesize the source separated signals by inverting TFDs [7]

5. SIMULATION RESULTS

In this section, the simulations are performed to show effectiveness
of the proposed algorithm and it is compared to algorithm similar
to that in [4]. In the proposed algorithm WV-based STFD is used

III  967



Fig. 1. NMSE of all linear FM sources

while in [4] MWV-based STFD is used. In order to make a fair
comparison, both algorithms are assumed to have perfect estimation
of A, which is randomly generated. Furthermore, values of ε1 and
ε2 are tuned such that the computational speed of both algorithms
are the same (using MATLAB pro ling function). There are four
sources and three sensors. Minimal of three sensors are needed for
both algorithms to work because there are two sources involved at
MPs/CPs. The additive noise is assumed to be zero-mean Gaus-
sian and the SNR is varied up to 30dB. There are 256 number of
snapshot collected each second. In the rst example, the sources are
one single tone with frequency of 0.2 rad

s
and three linear FM sig-

nals with instantaneous frequency of 0.0074 rad
s

, 0.008t + 2.2 rad
s

and −0.008t + 2.7 rad
s

. In the second example, the sources are two
single tone with frequency of 0.2 rad

s
and 2.2 rad

s
, one linear FM

signals with instantaneous frequency of −0.008t + 2.7 rad
s

and one
multicomponent source that consist of two linear FM signal criss-
crossing each other with instantaneous frequencies of 0.009t rad

s
and

−0.009t +1.148 rad
s

. With these kind of sources, it is impossible to
mask or to partition the TF plane into TF planes that contain sources
less than four sources without partitioning any source’s TF signature.
Thus, one could not use the method in [2] onto each partition.

The Figure 1 and 2, shows the normalized mean square error
(NMSE) performance over Nmc = 100 Monte Carlo runs. The
NMSE is de ned as

NMSE =
1

Nmc

NmcX
r=1

‖ŝr − s‖2
‖s‖2

In the Figure 1, result of the rst example shows the proposed method
is better than existing subspace method [4] by about 1dB at SNR
30dB. The sources in this case are non-disjoint however each of them
are still linear FM. The result of the proposed method is even more
dramatic in the second example as it is shown in Figure 2. The per-
formance gain at SNR 20dB to 30dB are almost 3dB. This is because
of the proposed algorithm uses WV-based STFD. This is possible
because, proposed algorithm speed could be maintained at the same
speed as existing subspace algorithm by controlling ε1 and ε2 while
allowing more CPs into the subspace processing in subsection 4.4.

6. DISCUSSION AND CONCLUSION

This paper has demonstrated a better underdetermined source sepa-
ration with time-frequency technique. The performance gain with-
out expense of the computational speed is mainly due two combined
factors. Firstly, due to the use of WV-based STFD which do not sup-
press CTs due to different sources or multicomponent signal. The

Fig. 2. NMSE of 3 linear FM sources and one multicomponent sig-
nal source

spatial structure of STFD could reveal between these two types of
CT by the exploitation of subspace method at CPs, which was not ex-
ploited in [4]. By now the computational speed is severely reduced
if one would use subspace algorithm alone because many CPs are
included for processing. Finally, with the batch processing of (6),
the computational burden of subspace method could be off-loaded
especially for SAPs.
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