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ABSTRACT

In this paper we focus on the two-stage underdetermined 
blind source separation (BSS), which consists of the mixing 
matrix estimation stage, the first stage, and the source 
estimation stage, the second stage. In the first stage, both the 
mixing matrix and the number of sources are estimated by a 
new potential-function-based clustering method using a new 
potential function constructed by Laplacian-like window 
function. In the second stage, in order to overcome the 
disadvantage of l1-norm solution, a new sparse 
representation based on high-order statistics in transformed 
domain, which is called statistically sparse component 
analysis (SSCA), is proposed to recover the sources. 
Compared with the existing two-stage methods, the 
proposed approach can achieve higher reconstructed signal-
to-noise ratios (SNRs). 

Index Terms—Underdetermined, sparse representation, 
two-stage, blind source separation 

1. INTRODUCTION

Blind source separation (BSS), which has been widely 
studied, consists in estimating N original sources only from 
their M observed mixtures. In this paper we focus on the 
underdetermined case, i.e., M<N, which is a challenging 
problem. In the case of underdetermined BSS, estimating 
the mixing system is not sufficient for reconstructing the 
sources because the mixing matrix is not invertible. So it 
requires important prior information on the sources, e.g. 
sparsity, to resolve the underdetermined BSS problem. 
   Sparse representation of signals has received a great deal 
of attention in recent years [1-3]. When the sources are 
sparse, small values are more likely and thus, for a given 
data point k, one of the sources is significantly larger, the 
remaining ones are likely to be close to zero. The sources 
can be sparse in the Time-Frequency (TF) domain if a 
suitable linear transformation is performed, e.g. discrete 
wavelet packets transformation [4]. Sparse representation 
has been widely applied in underdetermined BSS.  

Several two-stage methods were proposed in 
underdetermined BSS [4-7]. In the mixing matrix estimation 

stage, time-frequency-transform-based clustering method 
[4], k-means clustering method [5], absolute winner-takes-
all learning method [6] and potential-function-based method 
[7] have been proposed. In the source estimation stage, there 
are l1-norm solution method [5][8], shortest path 
decomposition method [6][7], statistically sparse 
decomposition principle (SSDP) [9], etc. Bofill and 
Zibulevsky [7] first proposed the shortest path 
decomposition algorithm which obtained the minimal l1-
norm representation of each data point by a linear 
combination of the pair of basis vectors that enclose it. In 
shortest path decomposition algorithm, it is not reasonable 
that the linear combinations of two basis vectors can’t occur 
when these two vectors are not adjoining. The sources must 
be sufficiently sparse in l1-norm solution. In [9], a sparse 
representation based on minimizing correlation coefficient 
in a fixed time interval was proposed to solve this problem, 
but it only estimated the sources in time domain where the 
sources are not sufficiently sparse.
   In this paper, a new two-stage approach to 
underdetermined BSS based on sparse representation is 
proposed. Firstly, both the mixing matrix and the number of 
sources are estimated by a new potential-function-based 
clustering method using a new potential function 
constructed by Laplacian-like window function. Secondly, 
in order to overcome the disadvantage of l1-norm solution, a 
new sparse representation based on high-order statistics in 
transformed domain, which is called statistically sparse 
component analysis (SSCA), is proposed to estimate the 
sources. Compared with the existing two-stage methods, 
better separation performance is obtained in the proposed 
approach.

2. SYSTEM MODELS AND ASSUMPTIONS

The following noise-free model and noisy model of BSS 
are considered: 

      (1) X = AS
X = AS + N   (2) 

where (1), ( ) M KKX x x  is the matrix whose rows 
denote M mixtures of sources, (1), , ( ) N KKS s s  is 
the matrix whose rows denote N sources, and 
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1, , M N
NA a a  is the mixing matrix, M KN  is 

the noise matrix.  
The sparsity of sources plays a key role in the two-stage 

method. To obtain a sparse representation, discrete wavelet 
packets transformation is applied to (1), and a transformed 
model is obtained: 

X = AS     (3) 
or    

( ) ( ), 1, ,k k kx = As K  (4) 
where each row of X  is composed of the discrete wavelet 
packets transformation coefficients of a corresponding row 
of , each row of  is the TF representation of the 
corresponding source in S ,  is the kth column of 

X S
( )kx X ,

 is the kth column of .( )ks S
The purpose of BSS is to find the solution to the above 

equations when A  and S  are unknown. It is very difficult 
to resolve the problem only by the mixture X  without any 
hypothesis. So the following assumptions should be 
satisfied in the proposed method: 
A1) M<N, for convenience, we assume M=2, N>2;
A2) The sources are statistically mutual independent and 
sparse in certain degree in transformed domain (the column 
vector  has at most M nonzero elements); ( )ks
A3) The mixing matrix  is of full row rank, that is, its any 
M×M square submatrix is nonsingular.  

A

A4) The noise is additive and independent to the sources.  

3. MIXING MATRIX ESTIMATION 

In this section, the potential-function-based method [7] is 
improved. 

As shown in Fig.1, because of the sparsity of sources, the 
scatter plot of X  shows a tendency to cluster along the 
directions of the basis vectors ja , which are columns of  .
So estimating the cluster directions is equal to estimating 
that of 

A

ja . Sparsity of sources is often modeled by 
Laplacian distribution [6]. So a new Laplacian-like window 
basis function is defined instead of that was used in [7]: 

( ) exp( | |)      (5) 
So the weighted potential function (WPF) becomes: 

( ) ( ( ))i i
i

w   (6) 

where  is the assumed cluster center. i  is the angle of the 
scatter plot point i.  is the parameter of scale. iw  is the 
weight of each scatter plot point, and generally is the square 
of the modulus of the data. 
    The number of sources can be determined by the number 
of local maxima of the resulting function ( ) , since 

[0, ), . The mixing matrix is estimated by the 
localizations of the local maxima of the WPF. In practice, 
the range of  can be divided into P equal spaces. Discrete 
data of WPF is obtained and WPF obtain its local maxima. 

Estimating the cluster directions is to localize the peaks of 
WPF, as shown in Fig.2.  

In the proposed algorithm, a threshold of  iw  is set: 
i 0w  if iw , which can not only reduce the 

computational complexity but also improve the accuracy of 
estimation.  
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Fig.1 Scatter plot of X , a mixture of four voices. 
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Fig.2 Plot of the WPF 

4. SOURCE RECOVERY 

Assuming the sources are sparse and A  is given, 
maximizing a posterior (MAP) method, which is usually 
used in source estimation in underdetermined BSS, can be 
solved by the following linear programming problem [1-2]: 

1 1

min ( ) ,
K N

j
k j

s k subject to AS = X  (7) 

Then, l1-norm 
1

1 1

( )
K N

j
k j

s kS  can be used to measure 

the sparsity. The source recovery stage is to minimize the l1-
norm 1

S  under the constraint AS  . If the sources are = X
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not sparse enough in time domain, the following linear 
programming problem in TF domain will be considered: 

1 1

min ( ) ,
K N

j
k j

s k subject to AS = X  (8) 

After  is estimated,  can be obtained by inverse 
wavelet packets transformation [4]. 

S S

In shortest path decomposition algorithm[7], the sources 
must be sparse enough. And the approach proposed in [9] 
just estimated the sources in the time domain where the 
sources are not sufficiently sparse. 

To resolve the above problems, a new sparse 
representation based on high-order statistics in transformed 
domain, which is called statistically sparse component 
analysis (SSCA), is proposed to recover the sources in this 
paper.

A sparse model can be obtained from Eq. (4) and the 
assumptions in section 2. Given a data point k, if the number 
of the non-zero valued elements in source vector  is no 
more than M, the model is given: 

( )ks

( ) ( )
( ) 0,

J J

j

k k
s k j

x A s
J

  (9) 

where 1 2{ , , , } {1,2, , }MJ j j j N ; ;
1

( , , )
MJ j jA a a

1 2
T( ) [ ( ), ( ), , ( )]Mj j jJ k s k s k s ks

Under the assumptions in Section 2, the matrix JA  is 
M×M nonsingular matrix. The following purpose is to 
obtain the matrix JA .

First, the data is centered [10]: 
( ) ( )k k xx x E ,   (10) 

where  is the mean of the data. Ex

Then  is whitened to obtain the vector z whose
correlation matrix 

( )kx
TE zz  is equal to unity [10], as follows: 

1/ 2 T

T T

( )

( )( ( ))

k

E k k

z Vx
V = ED E

x x EDE

,    (11) 

where  is M-by-M matrix, E  is the orthogonal matrix of 
eigenvectors of 

V
T))( )( (kx x

z

E k  and is the diagonal 
matrix of its eigenvalues. 

D

   According to (9) and (11), we can obtain: 
1( ) ( )J Jks VA ,  (12) 

From ICA algorithms [10], estimating the mutual 
independent sources is based on the maximization of 
nongaussianity. So nongaussianity can be used to estimate 
the components of ( )J ks . The approximating negentropy is 
used as the measure of nongaussianity in this paper, and is 
defined as following: 

2( ) [ ( ) ( ) ]C y E G y E G v   (13) 
where , and v is a standardized Gaussian 
variable. 

2( ) exp( / 2)G y y

   Given a point k and a not-too-short interval k ,
( ( ))JC ks  can be written as: 

1
11( ( )) [ (( ) ) ( ) ]

k k

J J
k

C k G E G
k

s VA z 2v  (14) 

where  is a vector whose components are standardized 
Gaussian variables, 

v
 is l2-norm. 

J , which maximizes , is selected as the 

estimation of 

( ( ))JC ks

J . Thus, the estimation J  can be obtained: 

1 2, , ,
1,2, ,

arg max ( ( ))
M

J
j j j

N

J C ks ,  (15) 

Finally, the sources in transformed domain can be 
recovered by: 

1( ) ( )
( )

( ) 0,
J J

j

k k
k

s k j

s A x
s

J
 (16) 

   For [1, ]k K , the inverse discrete wavelet packets 
transformation is applied to obtain the estimation of  sources 
in time domain.  

In the proposed approach, that the sources are 
unnecessary to be the sparsest approximates the truth.  

5. SIMULATION AND RESULTS 

Two male speeches and two female speeches from TIMIT 
speech database sampled at 8 kHz with 16 bits resolution 
were used in our experiments, as shown in Fig.5 (a).  The 
duration of each source is 4 seconds. 

5.1. The first stage----mixing matrix recovery 

To construct the two mixtures which are shown in Fig.4, 
a 2×4 mixing matrix is generated by four fixed angles, and 
every columns is normalized: 

cos18 cos60 cos100 cos150
sin18 sin 60 sin100 sin150

A

A  is the estimation of A  estimated by the proposed 
approach and A  is the one obtained by the method in [7]. 
Their results in the experiment are: 

0.9511 0.5000 -0.1719 -0.8660
0.3088 0.8660 0.9851 0.5001

A

0.9527 0.4969 -0.1702 -0.8642
0.3038 0.8678 0.9854 0.5031

A

The differences between the mixing matrix and its 
estimation are presented: 

0.0001 -0.0000 -0.0017 0.0001
-0.0002 0.0000 0.0003 0.0001

A A

0.0017 -0.0031 0.0035 0.0018
-0.0052 0.0018 0.0006 0.0031

A A
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In the experiment, the parameters are set as: =360,
=0.2, =0.2× (mean of the data), P=1440. 
Compared with the mixing matrix identification method 

used in [7], the basis function ( )  defined in this paper is 
better, and the results of estimation are more accurate. 

5.2. The second stage----source recovery

Four voices were estimated from two mixtures using the 
proposed SSCA method presented in Section 4. The fixed 
data interval  is set to 256.  estimated in the first 
stage was used. The results estimated by the proposed 
method are shown in Fig.5 (b). 

k A

A reconstruction index is defined as a signal-to-noise 
ratio [4]: 

2

210logSNR
S

S - S

where  is the estimated source, S  is the original one. S
The SNR comparison between the shortest path 

decomposition [7] and the SSDP method proposed [9] are 
listed in Table 1. It can be seen that the proposed approach 
is more effective and has better results. 
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Fig.4 Two mixtures of four sources 
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Fig.5 (a) Four speech signals (b) The recovered signals 

SNR
Method S1 S2 S3 S4

l1-norm 5.4712 6.0278 6.5811 7.0149
SSDP 6.5828 7.5589 8.7182 9.6681
SSCA 6.9519 8.0726 9.5967 10.6176

Table 1 The SNRs using different methods 

6. CONCLUSION 

A new two-stage approach of underdetermined blind 
source separation is proposed in this paper. In the first stage, 
a new potential-function-based clustering method is 
proposed to estimate the mixing matrix. In the second stage, 
a new sparse representation based on high-order statistics, 
which is called statistically sparse component analysis 
(SSCA), is proposed to recover the sources. Simulation 
results demonstrated that the proposed approach can achieve 
higher reconstructed signal-to-noise ratios (SNRs).  
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