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ABSTRACT

The problem of blind source separation of acoustic mixtures is
often addressed using independent component analysis in the fre-
quency domain. One problem with this approach is the inconsis-
tency across frequency in the permutation of the source estimates.
Solutions to this problem have been proposed that exploit known
properties of both the source signals and the mixing system, but re-
quire the microphones to be in a constrained geometry. In this paper
a solution is presented that avoids this constraint by extracting infor-
mation from the magnitude of the mixing system instead of its phase.
The new method combines that information with information from
the source estimates to provide a reliable permutation alignment.

Index Terms— Blind source separation, Acoustic signal pro-
cessing, Array signal processing, Independent component analysis

1. INTRODUCTION

The separation of sound sources from convolutive mixtures is a chal-
lenging problem in the eld of acoustic signal processing. The prob-
lem is often presented as a case of blind source separation (BSS),
since it is commonly assumed that there is no prior knowledge about
the sources or about the mixing system.

Several BSS algorithms have been proposed for the case of in-
stantaneous linear mixtures, usually based on the decorrelation of the
sources or on their mutual independence. In the later case the prob-
lem can be interpreted as an independent component analysis (ICA)
problem [1]. The solution to this problem is not unique, since any
arbitrary permutation or scaling of a solution is also a valid solution.

The BSS problem becomes much more complex when the mix-
ture is convolutive. Some of the approaches used for the instanta-
neous case can be extended for the convolutive one, but the com-
putational requirements become too high for real time applications.
Alternatively, it is possible to formulate the problem in frequency
domain, typically using discrete frequencies [2]. This transforms the
convolutions into products, allowing the application of an instanta-
neous BSS algorithm separately for each frequency.

In the frequency domain BSS approach the permutation ambi-
guity holds for each frequency bin separately. This is a major prob-
lem, since it does not allow to reconstruct the sources from their fre-
quency domain representation. There is no immediate way to know
which of the estimated frequency components needs to be selected
at each frequency to reconstruct a given source. Some additional
properties of the sources or the mixing system need to be used.

This work is supported in part by the National Science Foundation
Award IIS-0534221.

Several different approaches have been proposed to deal with
the permutation problem. Most of them try to align the permutations
after performing the separation, setting the new permutations in such
a way that a known property of the sources or the unmixing system
is satis ed by the solution. Some properties that have been proposed
are the smoothness of the unmixing system [3], the directional infor-
mation implicit in the unmixing system inverse [4] or the similarity
of the time evolution of the sources at different frequencies [5].

The use of information related to the geometry of the mixing
system is an effective way to arrange the permutations, as long as
some important assumptions about the mixing system are satis ed.
One common assumption is that the microphones form an array or,
more generally, that distances among them are bounded [6]. Another
common assumption is that the direct paths are dominant. When this
second assumption is not exactly satis ed, knowledge about the time
evolution of the sources can be used to enhance the solution [4].

In this paper an approach to the permutation problem is pre-
sented that exploits properties of both the sources and the mixing
system. The approach works with any number of sources, and does
not require any speci c arrangement or any bound to the distance
between microphones. This allows one to use it in distributed mi-
crophones applications, where previous approaches fail, like remote
collaboration where each participant may carry his own microphone
via a PDA or other portable device [7]. A simple and effective way to
combine the mixing system information and the source information
to provide a more reliable permutation alignment is also presented.

2. FREQUENCY DOMAIN BSS

In this paper an acoustic mixture is modeled as the linear combina-
tion of several statistically independent sources, each of them trans-
formed through a different linear time-invariant acoustic response,

xj(t) =
NX

k=1

R−1X
r=0

hjk(r)sk(t− r) for j = 1 . . .M, (1)

where t is the discrete time index, and N and M are the number of
sources and microphones. In the blind separation problem, the mix-
ing lters hjk and the sources sk are unknown, and the goal is to nd
an estimate of each source sk from the measured signals xj , know-
ing that the sources are statistically independent from each other. In
this paper only the case N = M is considered.

In the case of acoustic mixtures, the length of the mixing l-
ters can be large. To reduce the associated computational cost the
problem is moved to frequency domain. Figure 1 shows the differ-
ent stages of this approach. First, the L-point STFT of the measured
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Fig. 1. Frequency domain BSS.

signals, xj(t), is computed:

xj(f, t) =

L/2−1X
r=−L/2

xj(t+ r)win(r)e−i2πfr, (2)

where f is the frequency index, and win is the analysis window. If
this window is long enough, the mixing system becomes approxi-
mately instantaneous. In vector notation,

x(f, t) = H(f)s(f, t), (3)

where x(f, t) = [x1(f, t) . . . xM (f, t)]T is the measurements vec-
tor at one time-frequency point, s(f, t) is the corresponding source
signal vector, and H(f) is a square scalar (complex) mixing matrix.

Next, ICA is performed separately for each frequency to esti-
mate a separation system W (f) from the vectors x(f, t). The Com-
plex FastICA algorithm [8] is used for this. The result is

ŷ(f, t) = W (f)x(f, t). (4)

If ICA succeeds, the resulting vectors ŷ(f, t) will relate to s(f, t)
through a permutation matrix Q(f ) and a diagonal matrix D(f ), due
to the scaling and permutation ambiguities inherent in ICA:

ŷ(f, t) ≈ Q(f)D(f)s(f, t), (5)

The permutation matrices Q(f ) may be different for different fre-
quencies. To achieve the separation of the sources, it is necessary
to permute the vectors ŷ(f, t) so that they all relate to the sources
through the same frequency independent permutation matrix.

y(f, t) = P (f)ŷ(f, t) = P̂D(f)s(f, t) (6)

Permutation vectors can be used instead of permutation matrices, so
that the reordering in Equation (6) can be written as follows:

y(f, t) = [ŷp1(f, t) . . . ŷpN(f, t)]
T , (7)

where p(f) = [p1 . . . pN] is a sequence of permutation indexes,
i.e. a certain permutation of the sequence [1 . . . N ]. The set of all
possible permutation vectors is denoted as Π.

There are different ways to nd the right permutation vectors
p(f). Often this is done using additional information about the mix-
ing system or about the source signals. In [4], both kinds of infor-
mation are combined to provide a more reliable alignment. In the
following sections a related approach is proposed that can be used in
situations where some assumptions required in [4] are not satis ed.

3. CLUSTERING OF MAGNITUDE RATIOS

When ICA achieves separation at a given frequency bin, it becomes
possible to obtain information about the original mixing system from
the resulting unmixing matrix. In particular its inverse, B(f) =
W (f)−1 is related to H(f). This can be shown by noting that

x(f, t) = B(f)ŷ(f, t) ≈ B(f)Q(f)D(f)s(f, t), (8)
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Fig. 2. Magnitude ratio of the last two rows of bl(f) for l = 1, 2, 3,
after the separation of a 38 seconds long mixture of 3 sources.

and combining equations (3) and (8), it turns out that

B(f) ≈ H(f)D(f)−1Q(f)−1 (9)

This means that each of the columns of B(f) is an scaled version
of some column of H(f). The following notation is used for these
column vectors:

B(f) = (b1(f) . . .bl(f) . . .bN (f)) (10)

For this relationship between B(f) and H(f) to be useful to solve
the permutation inconsistencies, there needs to be some property of
the columns of H(f) that is different for each column (source), con-
stant across frequency, and invariant to the arbitrary scaling. It is
possible to nd such properties under the following assumption:

Assumption: The magnitude of the mixing response consists of
a frequency independent matrix multiplied by a scalar function q(f):

‖hjk(f)‖ = mjkq(f) (11)

This assumption is similar, but less restrictive, to the free- eld as-
sumption used in beamforming theory, and as such is satis ed ex-
actly in anechoic conditions. In real situations it may be approxi-
mately satis ed if the reverberation is not too big, or if the sources
are very close to the microphones.

Under the above assumption, the ratios between the magnitudes
of any two components of each vector bl(f) become frequency in-
dependent. For example, the vector

rl(f) = [b2l(f)/b1l(f) . . . bNl(f)/bN−1l(f)]
T (12)

can be used to align the permutations, since it will be the same for
a given source at different frequencies. In the previous equation,
bkl(f) are the elements of the vector bl(f) = [b1l(f) . . . bNl(f)]

T .
In a real situation where the above assumption is not exactly sat-

is ed, it may be possible to use the vectors rl(f) to choose the cor-
rect permutations if the frequency dependent variations are smaller
than the frequency independent ones. This is broadly the case for the
experimental setup described in Section 6, as Figure 2 illustrates.
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The procedure to decide the correct permutation vector pa(f)
for each frequency is the following:

1. Perform k-means clustering, with k = N on the set of all the
vectors rl(f) for all frequencies, and all l. This yields N cen-
troid vectors crk one for each source, and the corresponding
cluster standard deviations, σr

k.

2. For each frequency, nd the permutation that minimizes:

pa(f) =argmin
p∈Π

 
NX

k=1

‖crk − rpk(f)‖
2

(σr
k)
2

!
(13)

This step is necessary because clustering does not guarantee
that the column vectors at a given frequency bin will be as-
signed to different sources.

A probabilistic justi cation can be given for Equation (13). If the
vectors rl(f) were drawn from a multidimensional gaussian distri-
bution with mean crk and a constant diagonal correlation matrix, then
pa(f) would be the maximum likelihood permutation vector. In
practice the gaussian assumption may not be satis ed, so experimen-
tal evaluation of the previous algorithm is necessary.

4. CLUSTERING OF TIME ENVELOPES

Many sound sources of interest, like speech, are non-stationary. In
a time-frequency representation of speech, the time variations are
not identical for different frequencies, but they are not independent
either. They can be expected to present certain similarity, because si-
lence segments coincide across frequency, and active segments tend
to involve many frequencies more or less simultaneously.

These similarities are known to be most clear when looking at
adjacent frequency bins, but alignment based on local similarity does
not provide adequate results, due to the propagation of errors [9].
Correlation between arbitrary frequencies can be weaker. A way to
improve it is to work with magnitude envelopes, instead of using the
complex STFT sequences directly.

A clustering algorithm like the one described in the previous
section is able to extract global similarities. In this case the vectors
would be sequences modeling the time envelopes of the spectrogram,
one vector for each frequency bin and for each source. This method
is computationally expensive, but its implementation is very simple.
More ef cient and sophisticated approaches, such as the dyadic sort-
ing proposed in [10], could be used with potentially similar results.

The procedure to decide the correct permutation vector pa(f)
for each frequency using time envelopes is the following:

1. Compute the magnitude envelopes of the output spectrogram
ŷ(f, t), by ltering each ‖ŷl(f, t)‖ with a smoothing win-
dow, and downsampling the result to build the vectors el(f).

{el(f)}t =
X
r

‖ŷl(f, r)‖ewin(St − r) (14)

where S is the downsampling factor and ewin is the smooth-
ing window.

2. Perform k-means clustering, with k = N on the set of all
the vectors el(f) for all frequencies, and all l. This yields N
centroid vectors cek one for each source, and the correspond-
ing cluster standard deviations, σe

k.

3. For each frequency, nd the permutation that minimizes:

pa(f) =argmin
p∈Π

 
NX

k=1

‖cek − epk(f)‖
2

(σe
k)
2

!
(15)
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Fig. 3. Squared distances from each of the envelope vectors to each
of the centroids cek, after separation of a 38 seconds mixture. Vectors
are grouped according to the source they have been assigned to.

As the experiments described in Section 6 show, this mechanism in-
deed allows to identify the frequency components that correspond to
each source. This can be seen in Figure 3, which shows the resulting
distances to the cluster centroids for one of the experiments.

5. COMBINING SYSTEM MAGNITUDE AND SOURCE
ENVELOPES

The two approaches described in the previous sections, using the
mixing system magnitude and the source time envelopes, are based
on unrelated concepts, and it can be expected that better results will
be obtained by combining both.

A simple way to achieve this combination is to perform the clus-
tering operations described before, and then to choose each permu-
tation vector using the following rule:

pa(f) =argmin
p∈Π

 
NX

k=1

‖crk − rpk(f)‖
2

(σr
k)
2

+

NX
k=1

‖cek − epk(f)‖
2

(σe
k)
2

!

(16)
This is again the maximum likelihood choice if the clusters follow

certain gaussian model. But as Figure 3 suggests, this is sometimes
clearly not the case. This may be a problem, specially if the cluster
distributions of rl(f) and el(f) are very different. That can make
Equation (16) biased towards one of the two contributions.

6. EXPERIMENTAL RESULTS

Several experiments have been carried out to analyze the perfor-
mance of the proposed approach. The mixture segments were pre-
pared from a set of clean speech recordings mixed through one set
of room response recordings, using three sources and three micro-
phones. The mixture segment lengths used were 38 and 5 seconds.

For the mixing system, the set of room responses were recorded
in a controlled room con gured to emulate a remote collaboration
site, with a reverberation time of 300ms. Three loudspeakers were
located around a conference table, and three omnidirectional micro-
phones were placed on the table, attached to the side of three PDAs
in front of each of the loudspeakers. The nine acoustic responses
were estimated using the maximum length sequence method.
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Fig. 4. SIR frequency for 5 seconds signals, using envelopes and
magnitude ratios clustering, separately and jointly.

The speech signals were constructed by concatenating clean sen-
tence recordings taken from the TIMIT database to form three seg-
ments of 38 seconds, each from a different speaker in the database.
The speech segments and the room responses were downsampled
to 8KHz. No noise was added to the mixture. The separation ex-
periments were performed on the 38 seconds segments, and were
repeated using only the rst 5 seconds.

In the separation algorithm, a hanning window of length L =
1024 samples with a 75% overlap was used for the STFT analysis.
The time envelopes were computed using a triangular window of
length 6 and a downsampling factor of S = 3.

Separation performance was evaluated using the signal to inter-
ference ratio (SIR) at the outputs, computed both globally and across
frequency. For comparison, performance was evaluated before sep-
aration, and also after separation followed by an optimum alignment
performed with knowledge of the mixing system.

The following table shows the aggregated SIR results in dB.

Length Input Mag. ratio Envelope Combined Optimum
5 sec 5.75 15.97 13.73 16.15 17.85

38 sec 5.79 19.38 20.92 19.53 20.94

In the 5 seconds experiment ( rst row), clustering of magnitude
ratios gives a better alignment than envelope clustering, but both do
provide some improvement. When they are combined, the results are
further improved, although the optimum alignment is not reached.
The results across frequency are shown in Figure 4. Most of the
pronounced dips in the SIR curve indicate a permutation error.

In the experiment with long signals (second row), envelope clus-
tering provides an almost optimum alignment, while clustering of
magnitude ratios is slightly less effective. The combination rule
seems to be favoring the magnitude clustering results in this case,
even at some frequency bins where they are pointing to a wrong
alignment, leading to worse results than with envelope clustering.

The short data situation is more interesting for practical appli-
cations with a slowly varying mixing system, so these results show
the usefulness of the combined algorithm. Future work should aim
at improving the permutation decision rule.

7. CONCLUSION

A novel approach to the permutation alignment problem in blind
source separation has been presented in this paper. The approach
combines prior knowledge about general properties of both the mix-
ing system and the time evolution of the sources.

A simple assumption about the magnitude of the mixing sys-
tem has been shown to allow certain degree of alignment without
the need to add any constraint on the location of the microphones.
Regarding the time evolution of the sources, it has been found that
for long enough measurements time envelopes can be clustered to
obtain a very reliable alignment.

Finally, a way to combine both approaches that provides an im-
provement with respect to to either of them for short measurements
has been presented. This combination is not desirable or necessary
for longer signals, where time envelopes seem to provide a good
enough permutation alignment.
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