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ABSTRACT

Underdetermined blind source separation (UBSS) is a chal-

lenging problem that has recently been formulated in the time-

frequency domain. Previous work in the area of UBSS prob-

lem focuses on using sparse representations of signals, such

as matching pursuit and wavelet packet decomposition, for

identifying the sources. However, these methods are in gen-

eral computationally expensive and rely on the choice of an

appropriate basis function for obtaining a sparse representa-

tion. In this paper, we propose a new approach based on Co-

hen’s class of distributions. The new approach takes advan-

tage of the high resolution of time-frequency distributions for

obtaining a sparse representation, and separates the sources

by a simple clustering algorithm followed by a convex opti-

mization problem. Compared to other time-frequency based

separation methods, the presented approach is characterized

by its simplicity and ease of implementation. Experimental

results indicate the effectiveness of the proposed approach at

separating the sparse signals in the time-frequency domain.

Index Terms— Time-frequency distribution, blind source

separation, sparsity

1. INTRODUCTION

Underdetermined blind source separation (UBSS) considers

the recovery of the underlying source signals from mixtures

when there are more sources than sensors. It has applica-

tions in different areas, such as communications, speech pro-

cessing, image processing, and biomedical signal processing

[1]. UBSS is a more challenging problem compared with the

(over)determined source separation. Contrary to the (over)-

determined case, estimating the mixing system is not suffi-

cient for reconstruction of the sources since the mixing matrix

is not invertible. Therefore, additional a priori information

about the sources is needed to allow for reconstruction. One

increasingly popular and powerful assumption is the sparsity

of the sources for a given basis [2]. Sparse signal represen-

tations lend themselves to good separability of the sources,

because most of the energy of a basis coefficient at any time

instant belongs to a single source.

Since most real life signals are non-stationary and not suf-

ficiently sparse in the time domain, the time-frequency repre-

sentations of underlying signals are used for source separa-

tion. One advantage of using time-frequency analysis is that

the sources are much sparser in the time-frequency domain

compared to only in the time or frequency domains due to

the high resolution of time-frequency representations. Several

time-frequency based UBSS algorithms have been proposed

to achieve source separation using time-frequency distribu-

tions (TFDs) [3, 4, 5, 6]. In [3], the binary time-frequency

masks are constructed using the sparsity of speech signals in

the short time Fourier transform (STFT) domain to extract

sources from only two mixtures. However, the algorithm as-

sumes a specific signal model and is applicable to only two

mixtures at a time. The method presented in [4] is an exten-

sion of that in [3], with increased implementation complex-

ity. The mixing matrix is estimated using vector clustering

based on the co-linearity of linear time-frequency representa-

tions of mixtures in [5]. Recently, a two-stage cluster-then-

l1-optimization approach for UBSS problem in the wavelet

packet domain has been proposed where the mixing matrix

and the sources are estimated separately [6]. In this paper, we

extend this two-stage sparse representation approach to the

time-frequency domain, and compare its performance with

that of wavelet packets.

2. BACKGROUND ON TIME-FREQUENCY
ANALYSIS

A time-frequency distribution (TFD), X(t, ω), from Cohen’s

class can be expressed as 1 [7]:

X(t, ω) =

Z Z Z
φ(θ, τ)s(u +

τ

2
)s∗(u − τ

2
)ej(θu−θt−ωτ)du dθ dτ,

(1)

where φ(θ, τ) is called the kernel function and s(t) is the sig-

nal. Some of the most desired properties of TFDs are the en-

ergy preservation and the marginals. They are satisfied when

1All integrals are from −∞ to ∞ unless otherwise stated.
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φ(θ, 0) = φ(0, τ) = 1 ∀τ, θ and are given as follows:∫ ∫
X(t, ω) dt dω =

∫
|s(t)|2 dt =

∫
|S(ω)|2 dω,∫

X(t, ω) dω = |s(t)|2 ,

∫
X(t, ω) dt = |S(ω)|2.

(2)

Since severe cross-terms exist in different time-frequency

regions for some TFDs particularly when the signal is mul-

ticomponent, kernel functions that minimize the interference

are developed. For cross-term minimization, φ(θ, τ) should

satisfy

φ(θ, τ) << 1 for θτ >> 0. (3)

These kernel functions produce reduced interference distribu-

tions (RIDs).

3. TIME-FREQUENCY BASED SPARSE
REPRESENTATION APPROACH FOR UBSS

In this section, a two-stage approach for the UBSS problem

in the time-frequency domain is presented, in which the first

stage is for determining the mixing matrix, and the second

stage is for estimating the source signals.

3.1. Linear Mixture Model and Assumptions

In this paper, we consider the problem of determining the

source signals when the number of observed mixtures is less

than the number of source signals. Assume that the M mix-

tures, z(t) = [z1(t), z2(t), . . . ,zM (t)]T , of the N non-sta-

tionary complex source signals, s(t) = [s1(t), s2(t), . . . ,
sN (t)]T , are given with

z(t) = Bs(t), (4)

where B is the M × N instantaneous mixing matrix (M <
N ). We want to extract the underlying sources s(t).

Each mixture, zi(t), is first transformed to the time-fre-

quency plane, and then the corresponding time-frequency dis-

tribution is vectorized to form a matrix of time-frequency dis-

tributions, X. In our source separation problem, the observed

time-frequency distributions, X, can be written as a linear

combination of the original sources’ TFDs, S, assuming the

cross-terms between the sources are negligible by using a

RID:

X ≈ B2S = AS, (5)

where X = [x1, · · · ,xP ] ∈ RM×P is the mixtures of the

sources, P is the total number of time and frequency points,

A = B2 = [a1, · · · ,aN ] ∈ RM×N is an unknown mixing

matrix, B2 is the element-by-element square of the mixing

matrix in the time domain, and S = [s1, · · · , sP ] ∈ RN×P is

the time-frequency representations of the N unknown source

signals. Note that equation (5) is applicable to any signal. It

is also assumed that the source signals are sparse in the time-

frequency domain.

3.2. Determination of the Mixing Matrix

Due to the sparsity of the source signals in the time-frequency

domain, there exists many columns of S with only one nonzero

entry. For instance, suppose that si1 , · · · , siK
are K columns

of S, where only the first entry of each of these columns is

nonzero, then we have

Asij
= a1s1ij

j = 1, · · · , K, (6)

and

[xi1 , · · · ,xiK
] = A[si1 , · · · , siK

] = [a1s1i1 , · · · ,a1s1iK
],
(7)

where, xij is the ij th column of X, a1 is the first column of

A, and s1ij
is the first entry of sij

. From equation (7), we see

that each xij
is equal to a1 multiplied by a scalar s1ij

, which

means that these K column vectors of X, xi1 , · · · ,xiK
, are

distributed along the direction of a1. Thus, ideally after nor-

malization, xi1 , · · · ,xiK
are mapped to a unique vector on

the multidimensional unit circle which is equal to a1. How-

ever, in practice, since the mixture matrix X is not completely

sparse in the time-frequency domain, xi1 , · · · ,xiK
are not

exactly in the same direction as a1, but rather in the neighbor-

hood of a1. This means that a1 lies at the center of xi1 , · · · ,
xiK .

Therefore, we use the K-means clustering method to clus-

ter the column vectors of the mixture matrix X into different

clusters, where the center of each cluster corresponds to one

column vector of the mixing matrix A. By doing so, we can

obtain an estimate of the mixing matrix A.

3.3. Estimation of the Source Signals for a Given Mixing
Matrix

After obtaining the estimated mixing matrix, the next stage is

to estimate the source signals. For a given mixing matrix A
in equation (5), the source signals can be estimated by maxi-

mizing the posterior distribution P (S|X,A) of S. Under the

assumption that the prior is Laplacian, maximizing posterior

distribution can be implemented by solving the following op-

timization problem [8]:

min

N∑
i=1

P∑
j=1

|sij |, subject to AS = X. (8)

Hence, the l1-norm

J1(S) =
N∑

i=1

P∑
j=1

|sij | (9)
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can be used as the sparsity measure.

It is not difficult to prove that the optimization problem

(8) is equivalent to the following set of P smaller scale linear

programming (LP) problems:

min

N∑
i=1

|sij |, subject to Asj = xj for j = 1, · · · , P.

(10)

Finally, we propose the following algorithm for estimat-

ing the source signals:

Algorithm:

1. Pre-threshold the mixture matrix X to obtain a sparser

data matrix X̂.

2. Normalize the column vectors of the data matrix X̂.

3. Take a sufficiently large positive integer K as the num-

ber of clusters. Choose the initial points of iteration and

the distance measure criterion. In this paper, we choose

the squared Euclidean distance as the criterion.

4. Do K-means clustering on X̂ followed by normaliza-

tion to estimate the sub-optimal mixing matrix A.

5. Using the estimated mixing matrix A and the mixtures

X, estimate the time-frequency representations S by

solving the set of LP problems in equation (10).

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, several examples will be used to illustrate

the effectiveness of the proposed approach to separate the

sparse source signals from their fewer mixtures in the time-

frequency domain. The binomial kernel [7] is used for com-

puting the TFD since it belongs to the class of reduced inter-

ference distributions (RIDs).

Example 1: The set of observed signals are two linear

combinations of four Gabor logons. These four Gabor logons

are centered at the time sample point and the normalized fre-

quency (30,0.7), (160,-0.7), (70,-0.4), and (120,0.1), respec-

tively. Each observed signal is first transformed to the time-

frequency domain with I = 50 time samples and L = 64
frequency samples. Each TFD is then vectorized to form a

TFD mixture matrix X = [X1;X2] of size 2 × 3200.

Fig. 1 presents a scatter plot of the mixtures X (X2 vs.

X1) in the time-frequency domain. It can be seen from this

plot that almost all significant data points are distributed along

four different directions, thus providing very good separabil-

ity. The separation results using the proposed approach are

illustrated in Fig. 2. Fig. 2(a) and (b) represent the two mix-

tures. The four extracted Gabor logon signals are shown in

Fig. 2(c), (d), (e), and (f). The results indicate that these four

Gabor logons can be successfully separated from their two

mixtures using the proposed approach based on their sparsity
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Fig. 1. Scatter plot of two mixtures of four Gabor logons in

the time-frequency domain
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Fig. 2. The mixtures and the separation of four Gabor logons:

(a) and (b) two mixtures; (c), (d), (e), and (f) four extracted

Gabor logons

with an average signal to interference ratio (SIR) of 36.1251

dB.

Example 2: Two mixtures of a chirp signal and two Ga-

bor logons are given. The chirp signal has a linear frequency

increasing from an initial normalized frequency of -0.2 to a

normalized frequency of 0.2. The Gabor logons are the first

two Gabor logons given in Example 1. A scatter plot of the

two mixtures in Fig. 3 shows that it is similar to the first ex-

ample in that the distributions of data points belonging to dif-

ferent sources are along three different directions. Since the

chirp signal overlaps with the two Gabor logons in the time

domain, typical time domain separation methods can not be

used to perfectly recover them. However, it is illustrated in

Fig. 4 that these three signals can be effectively extracted in

the time-frequency domain using the proposed method with

an average SIR of 32.7634 dB.

Example 3: In this example, the same two mixtures of four

Gabor logons given in Example 1 are used. The effectiveness

of the presented approach is compared for TFDs and wavelet

packets (WP) in the presence of noise. Haar wavelet with five

levels is used for the wavelet packet decomposition.

To show the effect of increased sparsity of TFDs, the mix-
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Fig. 3. Scatter plot of two mixtures of a chirp and two Gabor

logons in the time-frequency domain
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Fig. 4. The mixtures and the separation of a chirp and two

Gabor logons: (a) and (b) two mixtures; (c) extracted chirp;

(d) and (e) two extracted Gabor logons

tures at different levels of white Gaussian noise are consid-

ered. 100 Monte Carlo simulations are used for each noise

level. The average mean squared error (MSE) between the ex-

tracted sources and the original sources is calculated for both

the TFD and WP. The TFD and WP provide similar results

when there is no noise. However, as the noise level increases,

the performance of the WP rapidly degrades compared to that

of the TFD. The MSE versus the signal-to-noise ratio (SNR)

is shown in Fig. 5 for both the TFD and WP. This result shows

that the RID results in a more sparse time-frequency surface

compared to the WP, which improves the robustness of BSS

under noise.

5. CONCLUSIONS

This paper introduces a two-stage approach for underdeter-

mined blind separation of sparse and non-stationary sources

using TFDs. The mixing matrix is estimated using K-means

clustering algorithm based on the sparsity of the sources; for

a given mixing matrix, the sources are extracted using a lin-

ear programming method. The performance of the proposed
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Fig. 5. Comparison of MSE versus SNR for extracted sources

with TFD and WP

approach is compared with wavelet packets under different

noise levels. The results show that the presented method is

simple and effective at separating the sources from their mix-

tures, and is more robust than wavelet packets under noisy

environments. Future work will consider the separation of

source signals that are less sparse in the time-frequency do-

main, including a pre-sparsification stage.
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