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ABSTRACT

We consider the problem of blind separation of discrete sources
with nite alphabets. More speci cally, multiple-amplitude-
shift-keying (M-ASK) alphabet and complex quadrature am-
plitude modulation (QAM) alphabet are studied. The pro-
posed separation method exploits the geometry of the received
data constellation. The method relies on a nite-step non-
iterative algorithm, and therefore it is free from any conver-
gence problem. Numerical simulation results are included to
illustrate the performance of the proposed algorithm.

Index Terms— Blind separation, MIMO, nite alphabets

1. INTRODUCTION

The problem of blind discrete sources separation is of consid-
erable interest in wireless digital communications and other
elds. Past work on this problem include [1–8]. Among

them, [1, 4, 5] are iterative methods and suffer from local op-
tima. They, usually, require a good initialization in order to
minimize the problem of local minima. In [3], an analyti-
cal method based on a generalized eigenvalue decomposition
was developed for the constant modulus sources. Some tech-
niques that rely directly on HOS cumulants were introduced
in [6–8]. In [6], an adaptive separation algorithm which is free
of undesired stationary point for an arbitrary number of users
was derived from a constrained multiuser kurtosis optimiza-
tion criterion. However, the HOS technique often requires a
large number of observation samples for the accuracy of the
numerical result, and the computational cost is comparably
large. Furthermore, the source signal must be non-Gaussian,
and their kurtosis must have the same sign [10]. A geometric
approach for the blind separation of instantaneous mixtures
of digital signals was proposed in [2]. However, this method
is speci c only to the BPSK signals.

In this paper, we propose a geometric non-iterative method
that separates signals with the M-ASK or QAM digital for-
mat. We focus on the non-iterative algorithm development for
the whitened real case. We compare our proposed method to
the hyperplane-based algorithm [4] which has been shown to

be a fast algorithm with similar performance as iterative least
squares with projection (ILSP) [1]. The kurtosis-based algo-
rithm [6] is also simulated as a comparison. It is shown that
our proposed algorithm achieves a lower SER that both [4]
and [6].

2. PROBLEM FORMULATION

Suppose we have p narrowband M-ASK or QAM digital sig-
nals impinging on an array with q sensors (q ≥ p). We as-
sume that no intersymbol interference is present. Thus the
array output vector is an instantaneous mixture of the p trans-
mitted source signals. The array output vector x(n) can be
written as

x(n) = Hs(n) +w(n) (1)

where

x(n) � [x1(n) x2(n) · · · xq(n)]
T (2)

s(n) � [s1(n) s2(n) · · · sp(n)]
T (3)

w(n) � [w1(n) w2(n) · · · wq(n)]
T (4)

where s(n) is the vector of symbols from the alphabet S gen-
erated by p sources, w(n) is a vector of q dimensional ad-
ditive noise, H is an q × p unknown instantaneous mixture
matrix. To recover all source signals, it is assumed that H
is full column rank. If we concatenate N snapshots of the
received data as X =

[
x(1) x(2) · · · x(N)

]
, then we

have

X = HS+W (5)

where S
�
= [s(1) · · · s(N)] and W

�
= [w(1) · · · w(N)].

Here we assume thatN is large enough to satisfy the so-called
“suf cient excitation condition”, i.e. every combination vec-
tor of length p with elements from M-ASK or QAM alphabet
S appears at least once in S. Our objective is to recover H
and S up to a permutation matrix and a diagonal matrix from
the received data X only.
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3. PROPOSED SOURCE SEPARATION ALGORITHM

3.1. Real Case: M-ASK Alphabets

We rst consider the M-ASK signals, i.e.

SM−ASK = {±1,±3, · · · ,±(M − 1)}

Also, we assume that the channel matrixH and the noise ma-
trix W are real since the complex equation X = HS + W

can be easily converted into the following real equation

[
XR

XI

]
=

[
HR

HI

]
S+

[
WR

WI

]
(6)

where the superscripts [·]R and [·]I denote real and imaginary
parts of the matrices, respectively. We now enumerate the
steps for our source separation algorithm.

3.1.1. Clustering

In the presence of channel noisew(n), the observed data con-
stellation is a union of clusters centered around the points
x̃i = Hs̃i, i = 1, . . . , d, where d is the number of clus-
ters. Without loss of generality, the channel matrix H is as-
sumed to be full column rank, and hence the number of clus-

ters d = Mp. De ne Sd
�
= [̃s1 · · · s̃d] which represents

the p× d matrix containing exactly d distinct column vectors
with elements from the M-ASK alphabet. The cluster centers
x̃i can be extracted by using the unsupervised clustering algo-
rithms such as the Neural gas algorithm [9] and the smallest
distance clustering algorithm [2] (See [9] for a comprehensive
treatment of unsupervised clustering methods). If we concate-

nate the extracted cluster vectors x̃i as Xd
�
= [x̃1 · · · x̃d],

theoretically, the matrix has the form: Xd = HSd.

3.1.2. Whitening

We now whiten the data setXd by utilizing the following eas-
ily veri ed property: SdS

T
d = KrI, whereKr = 2M (p−1)(12+

32+ · · ·+(M −1)2). LetH = UDVT be the singular value
decomposition (SVD) of H, thus we have

XdX
T
d

Kr

= HHT = UDDTUT = ŪΣŪT (7)

where Ū denotes the submatrix of U from 1st column to pth

column, Σ
�
= diag(σ21 , · · · , σ2p), σi denotes ith singular value

of H. The whitening matrix is de ned as W
�
= Σ−

1

2 ŪT . We
can then form the whitened data set as

Zd = WXd = WHSd = QSd (8)

where Q is a p × p real unitary channel matrix to be deter-
mined.

3.1.3. Geometric Approach for Channel Estimation and Source
Recovery

The objective of this step is to estimate Q from the whitened

data setZd. Let dis(z̃i, z̃j)
�
= ‖z̃i−z̃j‖ denotes the Euclidean

distance in Rp between two constellation points. It is clear
that we have the following

dis(z̃i, z̃j) = ‖z̃i − z̃j‖ = ‖Q(̃si − s̃j)‖ = ‖s̃i − s̃j‖
= dis(̃si, s̃j) (9)

Notice that for any i �= j, dis(̃si, s̃j) is minimized if and only
if s̃i and s̃j differ only in one bit by 2, i.e. s̃i−s̃j = ±2ek, k ∈
{1, . . . , p}, where ek denotes the unit vector with its kth entry
equal to one, and its other entries equal to zero. Therefore, for
each pair of {z̃i, z̃j} that minimizes dis(z̃i, z̃j), we have

z̃i − z̃j = Q(̃si − s̃j) = ±2Qek k ∈ {1, . . . , p} (10)

Thus some column of the unitary matrixQ can be determined
up to a sign. It is clear that for each constellation point z̃i,
there exist p nearest neighboring vectors z̃jk , k = 1, . . . , p
that allow us to recover all p distinct columns of Q up to
a sign and a permutation of the columns. This implies that
the received data constellation geometry is very rich in infor-
mation pertaining to the channel. In this case, it is desirable
to nd a way that can extract the channel information from
the constellation geometry more accurately at a moderate or
low SNR. Notice that we have ‖z̃i‖ = ‖s̃i‖ and usually, the
constellation points with maximum vector norm contains the
highest signal power, and hence achieves the highest SNR.
Thus, these points are less likely to be confused. Therefore
we can summarize our geometric approach as follows

1. Choose 2p vectors z̃ik , k = 1, . . . , 2p that have maxi-
mum vector norm.

2. Choose one vector from z̃ik , k = 1, . . . , 2p as a refer-
ence vector such that ‖z̃iref ‖−

√
p(M−1) is minimal.

3. Choose p nearest neighboring vectors z̃nbk , k = 1, . . . , p
of z̃iref from z̃ik , k = 1, . . . , 2p by computing the Eu-
clidean distance between z̃iref and z̃ik .

4. The unitary matrix Q is then estimated as

Qe =
[
z̃iref − z̃nb1 · · · z̃iref − z̃nbp

]
(11)

The column normalized Qe is an estimate of Q up to a
sign and a permutation of the columns.

5. The input symbols are estimated as Se = Q−1e WX.

3.2. Extension to The Complex Case: QAM Alphabets

We now discuss the extension of our source separation algo-
rithm to the QAM alphabets, i.e. SQAM = {α + jβ : α, β ∈
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SM−ASK}. The complex extension is described as follows.
As for the QAM alphabets, we still have SdS

H
d = KcI, where

Kc is a constant implicitly determined by the alphabets and
the number of sources p. Therefore the observed data set Xd

can be whitened by following the same way as in the real case.
We have Zd = QSd, whereQ is a p×p complex unitary ma-
trix (note that H is allowed to be a complex matrix). In order
to apply the geometric approach presented in previous sub-
section, we transform the complex equation Zd = QSd into
the following real equation[

ZR
d

ZI
d

]
=

[
QR −QI

QI QR

] [
SR
d

SI
d

]
�
= QT

[
SR
d

SI
d

]
(12)

where QT is a 2p × 2p real unitary matrix. Thus we have
successfully converted the QAM source separation problem
into M-ASK source separation problem and can further es-
timate QT by using our proposed geometric approach. The
construction of Q from the estimated QT is detailed in [4].

4. DISCUSSION

Our work can be considered as a further development of work
[2] where the latter only permits BPSK signals. Both works
are clustering-based and operate on a whitened data space.
However, in contrast to the work [2] that is essentially an as-
signment algorithm, our work focuses on extracting the rich
channel information hidden in the constellation geometry, as
developed in [4]. This fundamental difference accounts for
the wider applicability of our geometric approach. It has
been shown that, in our work, the channel information is only
related to the relative difference between two constellation
points while irrespective of the exact positions of the con-
stellation points. In contrast, when assigning the received
constellation points to the corresponding source vectors, the
constellation points themselves as well as their relationship
with other points have to be considered. In other words, we
conclude that the information needed for channel estimation
is less than that needed for an appropriate assignment algo-
rithm.

We consider the computational complexity of our pro-
posed algorithm. The proposed algorithm involves three steps:
clustering, whitening and geometric approach for channel iden-
ti cation and signal recovery. The clustering algorithm adopted
in our simulations is the smallest distance clustering algo-
rithm [2], which is self starting, uses each received data vector
only once and works very well at moderately high SNR. The
complexity for clustering is NCp, where Cp are the computa-
tions required per iteration. Treating addition and multiplica-
tion equally, i.e. counting the ops, we nd that the computa-
tions required per iteration are O(qd2). Thus the complexity
for clustering is O(Nqd2). The complexity of step 2 and step
3 are respectively dominated by the correlation matrixXdX

T
d

and signal recovery Se = Q−1e WX, which have complexity
O(q2d) and O(Nqp), respectively. Therefore, by combining

all these steps, our proposed algorithm has an overall com-
plexity O(Nqd2 + q2d + Nqp). Since d = Mp, the com-
putational complexity is exponential with respect to p. This
suggests that our proposed algorithm is practical for separat-
ing a small number of discrete sources. In fact, the compu-
tational complexity is the most prohibitive issue in almost
all geometric methods. On the other hand, the hyperplane-
based algorithm does not need to do the clustering. The cost
for signal whitening is identical to our proposed algorithms,
O(q2d), while the cost for all the iterations is O(Iq2d), where
I is the total number of iterations till the global convergence.
Hence, the total computational cost of the hyperplane-based
algorithm is O(q2d + Iq2d+Nqp).

5. SIMULATION RESULTS

We now present simulation results to illustrate the perfor-
mance of our proposed algorithm. We compare our method
to the iterative hyperplane-based algorithm proposed in [4]
and the kurtosis-based algorithm proposed in [6]. For the
hyperplane-based and kurtosis-based algorithms, the gradient
search may converge to local minima. The magnitude of the
residual 1

Nq
‖X−HeSe‖2F is a good measure to test the con-

verged solution of the gradient search [1]. For the cases where
the residual is not reduced to the noise power level, we restart
the gradient search until the residual is decreased to the noise
power level. In our simulations, we consider p = 2 source
signals drawn from the 4-ASK alphabet {−3,−1, 1, 3} arriv-
ing at q = 2 sensors. The entries of the tested channel matri-
ces are independently chosen from a white Gaussian process.
We Totaly tested 100 independent channels, with 1000 Monte
Carlo runs for each channel realization. The symbol error rate
shown in the gure is the overall average of them. In each
run, we collect N = 100 data samples. Fig. 1 shows the sym-
bol error rate (SER) of the respective algorithms as a function
of SNR. We can see that our proposed algorithm achieves a
slightly lower SER than the hyperplane-based algorithm and
the kurtosis-based algorithms, especially at a moderately high
SNR. In fact, the performance of our proposed algorithm is
closely related to the adopted clustering algorithm. Hence,
more accurate clustering techniques, particularly at low SNR,
result in better performance of our proposed algorithm.

6. CONCLUSION

It has been shown that the received data constellation geome-
try contains rich information pertaining to the channel. Based
on this observation, we develop a practical non-iterative algo-
rithm for blind separation of digital signals with M-ASK and
QAM alphabets. The proposed algorithm compares favorably
with the existing hyperplane-based and kurtosis-based algo-
rithms. Since only a small fraction of the constellation geom-
etry is exploited in our geometric approach for channel esti-
mation, it is desirable for us to devise an ef cient and more
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Fig. 1. Symbol Error Rate (SER) Versus SNR

accurate geometric channel estimation approach in the future
by utilizing the constellation geometry to a full extent.
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