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ABSTRACT

This paper proposes a distributed state estimation architecture

for multi-sensor fusion. The system consists of networked

subsystems that cooperatively estimate the state of a com-

mon target from their own observations. Each subsystem is

equipped with a self-contained particle filter that can operate

in stand-alone as well as in network mode with a particle ex-

change function. We applied this flexible architecture to 3D

soccer-ball tracking by modeling the imaging processes re-

lated to the centroid, size, and motion-blur of a target, and

by modeling the dynamics with ballistic motion, bounce, and

rolling. To evaluate the precision and robustness of the sys-

tem, we conducted experiments using multiocular images of

a professional soccer match.

Index Terms— Distributed tracking, tracking filters, dy-

namics, position measurement, state estimation

1. INTRODUCTION

Object tracking technologies are getting more and more atten-

tion from researchers as public interest grows in surveillance,

robotics, intelligent traffic system, etc. In particular, broad-

casters are interested in such technologies for annotations of

sportscasts; images showing player/ball paths have become

indispensable for analyzing scenes, since they tell a lot about

the tactical situation on the field [1]. With respect to object

tracking technologies, the common issues in the above fields

are robustness, precision, speed, and flexibility.

Robustness to occlusion is a primary concern in sports ap-

plications, since the players tend to interfere with each other,

or the ball. Many solutions have been proposed for handling

occlusion: merge-split labeling, multiview measurement,

nongaussianity modeling, etc. [2]. The multiview/multimodal

approach [3] also provides a strong constraint on localization,

and it can also be a means for acquiring finer precision.

In this paper, we adopt a Bayesian state estimation frame-

work that allows an arbitrary number/formation of cameras.

The particle filter observes the ball image from various as-

pects in order to utilize as many measures on each binarized

silhouette: centroid, area, and orientation that reflect line-of-

sight, depth, and velocity. To be able to treat complex dy-

namics, Yan et al. [4] developed a 2D tennis-ball tracker that

bifurcates into flying and racket-hit modes. We extend their

idea to 3D space to have the tracker manage flying, bouncing,

and rolling motions.

For speed and flexibility, Coates [5] proposed a distributed

particle filter that relays a learnt likelihood function to next

subsystem. Our tracker also distributes the multiocular task

to multiple subsystems (tracking units) on individual PCs, but

differs from Coates’ filter in its strategies for data-fusion; his

filter fuses information in a likelihood space, whereas ours

works in a state space, neither with any crucial dependencies

on other subsystems nor with supervisors such as in [3].

2. SYSTEM ARCHITECTURE

The tracking system (Fig. 1) consists of networked tracking

units, each of which captures images from a camera. The

tracking unit is equipped with an ordinary particle filter that

is capable of estimating the distributionof the target state x(t)
based on its monocular observation and on the ball dynamics

as depicted in the upper part of Fig. 1. The state x(t), which

is to be stored in the “Particle Memory,” contains the 3D po-

sition s = [sX , sY , sZ ]T , the velocity ṡ, and the acceleration

s̈ of the ball at an instant t:

x(t) = [s(t)T , ṡ(t)T , s̈(t)T ]T .

Nonlinear multimodal modeling of the imaging process

including motion blur (see Section 2.3) is implemented in the

“Measurement” block. This modeling is an attempt at more

efficient scoring of particles than would be possible with com-

mon centroid-based trackers. The combinatorial dynamics

(see Section 2.4) implemented in “Prediction” and “Time-Lag

Compensation” blocks forces a tight-fit constraint that can re-

solve temporally unstable measurements (i.e. occlusions).

The lower part of Fig. 1 chooses a set of particles from

the “Particle Memory,” and multicasts it with a timestamp

over the network. When a unit receives particles from the

other units, “Fusion2” replaces most of the memorized parti-

cles with the received particles, leaving a number of its own

particles, thereby maintaining a way of bypassing unexpected

malfunction in other units (see Section 2.1).
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Fig. 2. Flow of particles.

Hereinafter, the probability density function p(x) for a

state x is approximated in the particle form with K state

vectors {x〈k〉}K
k=1 and their importance weights {w〈k〉}K

k=1.

X〈k〉 = {x〈k〉, w〈k〉} denotes the k-th particle. A measure-

ment by the n-th camera at an instant t is denoted by yn(t).

2.1. Data Fusion

Each of the “Fusion” blocks in Fig. 1 mixes the unit’s own

particles with those received from the others units (or those

updated by its “Measurement” block) so as to gain the result-

ing ingredient proportion of (own) : (alian) = (1−κ) : κ. The

smaller coefficient κ ∈ [0, 1] makes the tracking unit more

independent (i.e. performs monocularly) on the others. Fig. 2

illustrates an example of the particle flow between two track-

ing units. For simplicity, we assume that the tracking units

are synchronized with each other with constantly zero time

lag, and that the “Measurement” block fires twice a cycle, be-

fore and after it receives particles.

First, MeasA updates the importance weights based on a

measurement y1(1). Then, Fuse1A merges the updated and

not updated particles in the proportion of 90 : 10. Thus, the

90% of the particles experience the measurement y1(1).
TLCmp of Unit2 compensates the time lag if required (no

time lag in this case). At Fuse2, 98% of Unit2’s own particles

are replaced with ones received from Unit1. After MeasB
and Fuse1B, (0.90× 0.98× 0.90)K particles successively

experience both measurements y1(1) and y2(1). In other
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Fig. 3. Coordinate systems.

words, 79% of particles have importance weights that have

been subjected to a factorized likelihood of p(y2(1)|x(1)) ·
p(y1(1)|x(1)). The rest “half-baked” particles (with a small

minority of “completely raw” ones) will leave a chance to

overcome malfunctions of the measurement process(es).

In case of occlusion, frame-out, or camera trouble, the

unit automatically switches to a hands-off policy (κ 1A = 0
or κ1B = 0), where it passively accepts the others’ estimates.

Since the tracking unit, in real environment, asynchronously

invokes measurement(s) and particle reception in a best-effort

manner, the system can deal with time-varying latency by us-

ing TLCmp and it deals with unexpected system failures by

bypassing Fuse2 (i.e. κ2 =0) after a time-out period elapses.

2.2. Coordinate Systems

Fig. 3 illustrates the coordinate systems used in the follow-

ing discussion. Our method estimates the ball trajectory in a

world coordinate system Σ(w), which is fixed upon the real

world. The three axes x0, y0 and z0 in the X-, (−Z)- and Y -

directions of Σ(w) define the common original attitude Σ(c0)

of the cameras, and successive relative rotations of pan θn, tilt

ϕn and roll ψn determine the n-th camera’s attitude, which is

expressed with a rotation matrix R(θn, ϕn, ψn).
The n-th camera is modeled as a pinhole of focal length

fn that maps a state vector x (which contains 3D position

s(w)) onto its image coordinates ρ
(in)
n in Σ(in) as follows:

ρ(in)
n = fnr(cn)

n

/
([0, 0, 1]r(cn)

n )

r(cn) = R(θn, ϕn, ψn)([I3×3, O3×3, O3×3]x− q(w)
n ) .

Using the camera parameters θn =[θn, ϕn, ψn, fn, [q
(w)
n ]T ]T ,

we employ the following simple expression for the projection:

ρ(in)
n = h(x | θn) .

2.3. Measurement Model

The “Measurement” block calculates the importance weight

w〈k〉 based on the likelihood p(y(t) | x(t)) for a measure-

ment vector y(t) of the input image sequence:

w〈k〉(t) = p(y(t) | x〈k〉(t)) .
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Table 1. Physical parameters and typical values
parameters typical values

ball radius rB 0.11 m

gravitational acceleration g 9.8 m/s2

dynamic coefficient of friction μ 0.31
maximum height of friction H 0.30 m

coefficient of restitution e 0.35

focal length f 15 mm

exposure time T 1/59.94 s

pixel dimensions ux×uy 10μm × 20 μm

spatio-temporal resolution (1920×540) pel × 14.985 Hz

We chose the centroids η, the areas α, and the orientations

β of the silhouettes of ball candidates as components of the

measurement y, and defined the likelihood p(y | x) in a fac-

torized form of individual measurements η, α, and β:

p(y | x,θ) = p(η | x,θ)·p(α | x,η,θ)·p(β | x,η,α,θ).

2.3.1. Extraction of Ball Candidates as Preprocess

Non-green objects inside the turf area and moving objects out-

side the turf are extracted as preliminary silhouettes by using

a hybrid technique of chroma keying and inter-frame subtrac-

tion. M ball candidates (M ≥ 0) are selected by thresholding

the size, aspect ratio, and mean color of the silhouettes. In the

following, S [m] denotes the silhouette of the m-th candidate.

2.3.2. Likelihood Factor for Centroid

The static moment of the silhouette S [m] defines the centroid

η[m]. Assuming Gaussian noise N (0,Σimg) is present in the

measurement, we define the likelihoodp(η | x,θ) as follows:

p(η | x,θ) � C exp
(
−1

2
min

m=1,...,M
{d(η[m],x)}2

)
(1)

{d(η,x)}2 = [η − h(x | θ)]Σ−1
img[η − h(x | θ)]T ,

where C is a constant. To reduce computational costs, Eq. (1)

considers only the candidate that is closest to the projected

particle; m̂ = arg min
m=1,...,M

{d(η[m],x)}.

2.3.3. Likelihood Factor for Area

The likelihood factor for area is defined as

p(α | x,η,θ) ∝ exp

{
−1
2σ2

α

(
A(x) − α[m̂]

L
− μα

)2
}

, (2)

where A is the predicted area of a silhouette that consists of

the area of the instantaneous image (the first term in the fol-

lowing) and that of motion blur (the second term):

A(x) � πr2Bf
2

([0, 0, 1]r(c))2
+ 2rBf

2T‖ṡ(w)−(ẑ(w)·ṡ(w))ẑ(w)‖

ẑ(w) = [R(θ, ϕ, ψ)]T [0, 0, 1]T .
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Fig. 4. Definitions of distance χ and likelihood Λ.

We assumed that Gaussian noiseN (μα, σ
2
α) was added to the

observed area normalized by the contour length L in Eq. (2)

since the error on the observed area α due to defocus is ap-

proximately proportional to the contour length L.

2.3.4. Likelihood Factor for Orientation

We define the likelihood p(β | x,η,α,θ) according to the

orientation β of the silhouette’s principal axis. As illustrated

in Fig. 4(a), the distance χ(β,B) between the vectors β and

B is defined as the angle that the directions of the two vec-

tors make. As the more elongated silhouette S [m] will pro-

vide more robust information on the particle velocity, we de-

fined a triangular likelihood function Λ(χ, ω) whose width ω
stretches/shrinks inversely proportional (with coefficient

B0 = 1) to the length ‖B‖ as shown in Fig. 4(b):

p(β | x,η,α,θ) = Λ(χ(β[m̂],B(x | θ)), B0/‖B‖) .

2.4. State Transition Model

We modeled the state transition from t = t0 to t = t1 by

using a composite function of parabolic flight φ p, bounce φb,

and decelerating rolling φf due to friction (see also Table 1):

x(t1) = (φf ◦ φb ◦ φp)(x(t0), t1−t0) + ν(t1−t0)

φp(x,Δt) =

⎡
⎣ I3×3 (Δt)I3×3 (Δt)2I3×3/2
O3×3 I3×3 (Δt)I3×3

O3×3 O3×3 I3×3

⎤
⎦x

φb(x,Δt) =

⎧⎨
⎩

x (sZ ≥ rB)
[sX, sY, 2B−sZ, ṡX, ṡY,−eṡZ, s̈X, s̈Y, s̈Z]T

(otherwise)

φf (x,Δt) =

⎧⎨
⎩

x (sZ > H)

x−
[
0, . . . , 0, −[sX,sY ]√

s2
X+s2

Y

μg, 0
]T

(otherwise)
,

where ν(Δt)∼N (0,ΣνΔt) is additive process noise whose

variance is proportional to the time interval Δt= t 1−t0.

3. EXPERIMENTS

We conducted experiments using multiview professional soc-

cer images that were acquired by two fixed high-definition

cameras on the roof of a stadium with a baseline of 31 [m].
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Table 2. Errors in estimated 3D trajectories

instant t [s] −→ 1.20 2.20 4.14 5.47
absolute ‖U1−GT‖[m] 0.46 0.27 1.21 0.31

errors ‖U2−GT‖[m] 0.62 0.25 1.18 0.34
discrepancy ‖U2−U1 ‖[m] 0.93 0.09 0.15 0.17
(U1: Unit1’s estimate, U2: Unit2’s estimate, GT: ground truth)

Fig. 5. Trajectory estimated by Unit1.

Each tracking unit owned K = 1000 particles, all of which

were transmitted to the party. Table 1 lists the settings.

Assigned respectively to the left and the right cameras,

the two tracking units (Unit1 and Unit2) obtained almost the

same loci as evaluated in Table 2. Fig. 5 visualizes the es-

timated path of the ball that underwent various dynamics:

ballistic flight (a)–(d), intermittent occlusion around (e), and

rolling (f). During the occlusion phase, the system got binoc-

ular, monocular, or no observation depending on the player/

ball positions. The seamless switching of κ1A and κ1B in Fig.

2 made full use of available viewpoints to minimize increases

in positional errors.

Figs. 6 and 7 show the behaviors of the tracking units

when they were temporally isolated from each other by a net-

work failure. At t = 1.00 [s], the particle distributionwas uni-

modal because of the prior binocular observation. Although

the particles scattered in line-of-sight directions during the

failure period, they shrank to the intersection point of the two

line-of-sight rays after reconnection, and regained their preci-

sion. These results also indicate the tracking units’ dynamic

particle-handover and on-line plug-in/-out capabilities.

We also tested the trackers in another camera formation

and got similar results. The prototype with dual Xeon 3.2
GHz processors per tracking unit required about 0.5 [s/frame]

of computation time, including time for preprocessing.

4. CONCLUSIONS

We proposed a novel distributed particle filter that exchanges

particles among tracking units. Implementing the various

measurements and complex state-transition processes of a

Fig. 6. Trajectory by Unit2 during a network failure.

instant [s] ↓ Unit1 (camera 1) Unit2 (camera 2)

0.60 [s]

after dis-

connection

(t = 1.60)

0.53 [s]

after

recovery

(t = 2.20)

Fig. 7. Particle distributions after disconnection and recovery.

ball, we constructed a soccer-ball tracker. The experiments

showed the architecture could seamlessly integrate multiview

information to improve positional accuracy and robustness

against occlusion and system instability. We are planning to

build a sports annotation tool that can detect special events

such as corner-kicks by using the ball and players’ paths.
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