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ABSTRACT

Recently proposed decentralized estimation methods do no
consider errors occurring during the transmission of binary
observations from the sensors to fusion center. In this pa-
per, we extend the decentralized estimation model to the case
where imperfect transmission channels are considered. The
proposed estimator, which operates on additive channel noise
corrupted versions of quantized noisy sensor observations, is
approached frommaximum likelihood (ML) perspective. The
ML estimate unfortunately has no closed–form solution. We
analyze the log–likelihood function showing that it is log-
concave, thereby indicating that numerical methods, such as
Newtons algorithm, can be utilized to obtain the optimal solu-
tion. A suboptimal mean estimator that requires minimal in-
formation about the channel and sensing environment is also
proposed. Simulation results evaluating the variances of the
proposed optimal and suboptimal solutions are provided.

Index Terms— distributed estimation, sensor networks.

1. INTRODUCTION

A constraint in many wireless sensor networks (WSNs) is
that bandwidth is limited, necessitating the use and trans-
mission of quantized binary versions of the original noisy
observations. Many recent efforts address the estimation of
a deterministic source signal from quantized noisy observa-
tions [1–6]. When the probability density function (pdf) of
the sensor noise is known, transmitting a single bit per sensor
leads to minimal loss in estimator variance compared with a
clairvoyant estimator (estimator based on unquantized mea-
surements) [4, 5, 7]. Alternatively, when the sensor noise pdf
is unknown, pdf–unaware estimators based on quantized sen-
sor data have also been introduced recently [3, 5, 6].
The distributed estimation techniques considered in the

previously proposed methods are based on quantized noisy
sensor observations. These methods thus subsequently as-
sume that the transmission of binary observations from sen-
sors to fusion center is perfect. In this paper, we extend the
distributed estimation model to admit transmission imperfect-
ness, i.e., we consider the case where the quantized noisy
sensor observations are corrupted by additive noise during

transmission from sensor to fusion center. Our estimator is
hence based on noisy quantized versions of noisy sensor ob-
servations. Utilizing this extendedWSNmodel, we derive the
maximum likelihood (ML) estimate of a deterministic source
signal. The ML estimate unfortunately has no closed–form
solution. We analyze the log–likelihood function showing
that it is logconcave, thereby indicating that numerical meth-
ods, such as Newtons algorithm, can be utilized to obtain the
optimal solution. To further address the complexity and im-
plementation issues of the optimal ML estimator, we propose
fast, simple and practical suboptimal solution: mean estima-
tor. The mean estimator simply averages the noisy observa-
tions received at the fusion center.
The remainder of this paper is organized as follows. The

problem formulation and the extendedWSN model admitting
transmission noise is introduced in Section 2. The estimator
of a deterministic source signal utilizing the corrupted quan-
tized noisy sensor observations is derived in Section 3 along
with the suboptimal mean estimator. Section 4 details the ex-
periments evaluating the performance of the ML and mean
estimator. Finally, conclusions are drawn in Section 5.

2. PROBLEM FORMULATION

Consider a set of K distributed sensors, each making obser-
vations of a deterministic source signal θ. The observations
are corrupted by additive noise and are described by [1–6]

x(k) = θ + n(k), k = 1, 2, . . . , K. (1)

Noise samples {n(k) : k = 1, 2, . . . , K} are assumed zero–
mean, spatially uncorrelated and independent. Furthermore,
the density function of the sensor noise is denoted by n(k) ∼
fn(u; σn), where σn denotes the scale parameter of fn.
Suppose a fusion center is to estimate θ based on the noisy

sensor observations {x(k) : k = 1, 2, . . . , K}. If the fusion
center has knowledge of the sensor noise density function and
sensors are capable of sending the observations {x(k) : k =
1, 2, . . . , K} to the fusion center without distortion, then the
fusion center can simply perform the ML estimate of θ, θ̂ =

argminβ

[∑N

k=1
ρ(x(k)− θ)

]
where ρ(u) = − log fn(u; σn).

III  9291424407281/07/$20.00 ©2007 IEEE ICASSP 2007



SOURCE

+

+

+

....

.

..

n(1)

n(2)

n(K)

x(1)

x(2)

x(K)

S(1)

S(2)

S(K)

....

.

..

FUSION
CENTER

+

+

+

b(1)

b(2)

b(K)

w(1)

w(2)

w(K)

y(1)

y(2)

y(K)

....

.

..

Fig. 1. A decentralized, noisy channels WSN scheme with a
fusion center.

This scheme is only applicable in a centralized estimation sit-
uation where observations are either centrally located, or can
be transmitted to a central location without distortion. Neither
of these requirements is realistic in a WSN, where the sen-
sor nodes are bandwidth constrained and the communication
links between the fusion center and sensors are noisy. Due
to bandwidth limitations, the {x(k) : k = 1, 2, . . . , K} ob-
servations have to be quantized. To this end, we consider the
quantization operation as the construction of a set of indicator
variables, which are binary observations [1–6]

b(k) = 1{x(k) ∈ (τk, +∞)}, k = 1, 2, . . . , K (2)

where τk ∈ Z is a threshold de ning b(k),Z denotes the set of
real numbers, and 1{·} is the indicator function. In addition,
due to imperfections of communication links between sensor
nodes and the fusion center, we further extend the model to
include channel noise,

y(k) = b(k) + w(k), k = 1, 2, . . . , K (3)

where the {w(k) : k = 1, 2, . . . , K} are assumed to be zero–
mean independent channel noise samples and {y(k) : k =
1, 2, . . . , K} are the noisy observations received at the fusion
center. Moreover, the density function of the link noise is
denoted by w(k) ∼ fw(u; σw), where σw denotes the scale
parameter of fw. As a result, we consider the extended de-
centralized scheme shown in Fig. 1, where {S(k) : k =
1, 2, . . . , K} denote the sensors.

3. ESTIMATION BASED ON NOISY BINARY
OBSERVATIONS

Consider the most demanding bandwidth constraint case, in
which sensors are restricted to transmit one bit per x(k) obser-
vation. Furthermore, let every sensor use the same threshold
τ to form {b(k) : k = 1, 2, . . . , K}, i.e., b(k) = 1{x(k) ∈
(τ, +∞)}, k = 1, 2, . . . , K. Instrumental to theWSN scheme

presented in Section 2 is the fact that b(k) is a Bernoulli ran-
dom variable with parameter

1− α(θ) � Pr{b(k) = 1} = 1− Fn(τ − θ) (4)

where Fn(·) is the cumulative distribution function of n(k).
The probability density function of the noisy observations re-
ceived at the fusion center, i.e., y(k) = b(k) + w(k), for
k = 1, 2, . . . , K , is then given by

fy(y) = aw(y)Fn(τ − θ) + bw(y) (5)

where aw(y) � [fw(y)− fw(y−1)] and bw(y) � fw(y−1).
Let us de ne

α � α(θ) = Fn(τ − θ). (6)

Note that the α is the probability that the binary sensor ob-
servation b(k) is zero, i.e., α(θ) = Pr{b(k) = 0}, and is
restricted to the open interval (0, 1). To simplify the problem,
we rst derive the estimate for α and utilize the invariance of
the ML estimate to estimate θ using (6). The log–likelihood
function of α based on the noisy observations is given by

log{f(y|α)} =

K∑
k=1

log{aw(y(k))α + bw(y(k))} (7)

where y = {y(1), y(2), . . . , y(K)}. Unfortunately, ML esti-
mate of α has no closed–form solution. We utilize the New-
ton’s iteration technique. Convergence of Newton’s algorithm
to the optimal solution is guaranteed in this case since in the
following we prove that log{f(y|α)} is concave.
The second derivative of the log–likelihood function, de-

noted as log{f(y|α)}′′ is given by

log{f(y|α)}′′ = −

K∑
k=1

a2

w(y(k))

[aw(y(k))α + bw(y(k))]2
(8)

indicating that log{f(y|α)}′′ < 0 for all α. This subse-
quently indicates that log{f(y|α)} is concave.
Newton’s algorithm is utilized to obtain optimal α̂. New-

ton’s algorithm is based on the following iteration:

α̂(j + 1) = α̂(j)−
log{f(y|α)}′

log{f(y|α)}′′
(9)

where j denotes the iteration number and

log{f(y|α)}′ =
K∑

k=1

aw(y(k))

aw(y(k))α + bw(y(k))
(10)

Newton’s algorithm is guaranteed to converge to the optimal
solution regardless of the initialization since log{f(y|α)} is
concave.
Furthermore, the ML estimate for θ is now given by

θ̂ = τ − F−1

n (α̂) (11)
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where we utilized the invariance of ML estimate. Note that
the fact that θ̂ is the ML estimate (even though numerical
methods are utilized to obtain) guarantees (at least asymp-
totically) unbiasedness, consistency and ef ciency.
Although well established, Newton’s algorithm requires

the evaluation of Λ′L(α(j),y) and Λ′′L(α(j),y) at each itera-
tion. In addition, since Newton’s algorithm is recursive, these
function evaluations are performed M times, where M de-
notes the total number of iterations. Due to these issues, we
develop practical, easy–to–implement and fast suboptimal so-
lution in the following.
An estimate for θ that requires minimum information and

complexity is de ned as

θ̂ = τ − F−1

n

(
1 + νw −

1

K

K∑
k=1

y(k)

)
(12)

where νw = E{w}. This estimator assumes that the channel
noise has a nite mean, a constraint that, for instance, holds
for the Gaussian density that enjoys the central limit theorem,
but not for the Cauchy density that follows the generalized
central limit theorem and a member of the alpha–Stable den-
sity family. To see the effectiveness of the mean estimator in
nite mean valued channel noise cases, consider

1

K

K∑
k=1

y(k)→ E{y} = E{b}+ E{w} (13)

= 1− Fn(τ − θ) + νw (14)

where the rst and last lines follow from the weak law of large
numbers and the fact that b is a bernoulli random variable with
Pr(b(k) = 1) = 1− Fn(τ − θ).
The mean estimator reduces, in the perfect transmission

case, to the estimator of θ based strictly on quantized noisy
sensor observations [1–5]:

θ̂ = τ − F−1

n

(
1−

1

K

K∑
k=1

b(k)

)
. (15)

This is seen by noting that, for νw = 0 and σw → 0, {y(k) :
k = 1, 2, . . . , K} → {b(k) : k = 1, 2, . . . , K}.

4. NUMERICAL EXPERIMENTS

The proposed optimalML estimator (OMLE), and suboptimal
mean estimator (ME) fusion centers are evaluated through il-
lustrative numerical experiments. Considered are the output
variances and processing times of the proposed estimators.
The variances of the clairvoyant estimator (CE) [1, 8] and the
estimator operating on quantized (binary) noisy sensor obser-
vations (BE) [1–3,5] (no channel noise) are utilized as bench-
marks.
To evaluate the fusion center performance for the vari-

ous estimation techniques, consider an examples in which
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Fig. 2. Illustration of estimator variances for (a) optimal case
(θ = τ ) and σw = 0.4 with increasing number of sensors
and (b) with increasing channel power where K = 100. (c–
d) Similar illustration for non–ideal case (θ = 1 and τ =
1.2). Circles, crosses, pluses and asterisks represent the ME,
OMLE, BE and CE estimators respectively.

the sensor and channel noise are taken as Gaussian distrib-
uted random variables. The parameters of the experiment
are: θ = 1.0, τ = {1.0, 1.2}, K ∈ [50, 150], σn = 0.5,
σw ∈ [0.05, 1]. The variance of the estimate θ̂ (ensemble av-
erage of 10000 experiments) is plotted as a function of the
number of sensors, K , and as a function of the channel noise
spread parameter, σw , in Fig 2 (a) and (b), respectively. In
these two illustrations, the optimal θ = τ case is consid-
ered. Fig 2 (c) and (d) present similar conditions, but in this
case there is a discrepancy between the θ and τ , such that
θ = 1 and τ = 1.2. Plotted are the variance of the CE,
which, in this case, is given by Var(θ̂) = σ2

n/K and the
BE estimator in (15) operating on noise–free binary obser-
vations in the ideal case, i.e., when τ = θ, which is given by
Var(θ̂) = 2πσ2

n/4K .
As expected, the CE provides the smallest variances in

all cases, followed by the BE. Also expected, amongst the
proposed estimation techniques, the OMLE provides the best
performance. On the other hand, ME estimator also provides
close–to–optimal performance in environments characterized
by Gaussian density.
Similar experiments are also performed for the case where

the channel noise is modeledwith the algebraic–tailedCauchy
distribution. Identical parameters are utilized and the scale
parameter is set as γw ∈ [0.05, 1]. The results for ideal and
non–ideal cases are given in Fig. 3 (a–b) and (c–d), respec-
tively. The ME, as expected, provides results signi cantly
worse than the OMLE in this heavy–tailed case due to its re-
liance on the averaging operation.
The processing time of the proposedOMLE andMEmeth-
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Fig. 3. Illustration of estimator variances for (a) optimal case
(θ = τ ) and γw = 0.4 with increasing number of sensors and
(b) with increasing channel power where K = 100. (c–d)
Similar illustration for non–ideal case (θ = 1 and τ = 1.2).

Table 1. CPU Times in milisecs for Optimal and Suboptimal
Algorithms Implemented in MATLAB

Number of Sensors
Gaussian 50 100 150
OMLE 1.900T 1.975T 2.037T
ME 1.006T 1.025T 1.037T

Cauchy 50 100 150
OMLE 1.887T 1.950T 2.018T
ME T 1.018T 1.037T

ods are also evaluated through examples. The utilized experi-
ment parameters are: θ̂ = 1.0, τ = 1.2, σn = 0.5, {σw, γw} =
0.5 andK ∈ {50, 75, 100, 125, 150}. The simulations are run
in MATLAB on a 3.20 GHz, 2.00 GB RAM PC. Note that for
each K , the processing time given is the ensemble average
of 10000 trials. The results for both Gaussian and Cauchy
channel noise cases are tabulated in Table 1 where T = 0.160
milisecs is a normalizing unit of time and corresponds to the
simplest ME CauchyK = 50 case.
The processing time of the estimators, as expected, in-

creases with the number of sensors. The results indicate that
the mean estimator is the most computationally ef cient with
the least processing time, which is approximatively two times
faster than the OMLE.

5. CONCLUDING REMARKS

The decentralized WSN estimation scheme is extended to ad-
mit imperfections occurring during the data transmission from
sensors to fusion center. Based on the extended decentralized

estimation scheme, a maximum likelihood estimator operat-
ing on corrupted quantized noisy sensor observation is pro-
posed. Noting that there is no–closed form maximum like-
lihood solution, we show that the log–likelihood function is
concave and that numerical methods such as Newton’s al-
gorithm can be utilized to obtain the optimal solution. Due
to complexity and implementation issues associated with nu-
merical solutions, we derive the mean estimator suboptimal
solution. The mean estimator, which requires the minimum
amount of information and computational load, relies on sim-
ple averaging. Numerical examples evaluating and comparing
the the proposed techniques in varying environments (charac-
terized by Gaussian and Cauchy densities) indicate the effec-
tiveness of the optimal ML estimator and mean estimators.
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