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ABSTRACT

Recently, an adaptive convex combination of two LMS

(Least Mean-Square) filters was proposed and its tracking per-

formance analyzed. Motivated by the performance of such

scheme and by the differences between the tracking capabil-

ities of the RLS (Recursive Least-Squares) and LMS algo-

rithms, we propose a convex combination of one LMS and

one RLS filter. The resulting combination should profit of the

best tracking behavior of each component filter. A steady-

state analysis via energy conservation relation is also pre-

sented for stationary and non-stationary environments.

Index Terms— Adaptive filters, convex combination, en-

ergy conservation, tracking analysis, LMS algorithm, RLS al-

gorithm.

1. INTRODUCTION

It is well-known in the literature that adaptive filters that ex-

hibit good convergence properties in stationary environments,

do not necessarily present good tracking performance in non-

stationary environments [1]. A classical example is the track-

ing behavior of the LMS (Least-Mean Square) and RLS (Re-

cursive Least-Squares) algorithms [2]. Although the conver-

gence performance of RLS is superior to that of LMS in sta-

tionary environments, there are situations where one outper-

forms the other and vice-versa in terms of tracking capability.

In [2], Eweda showed that the performance of RLS and LMS

is similar when the matrix Q (autocorrelation of the perturba-

tion of the optimal solution, see Eq. (8) below) is a multiple

of the identity matrix. For other choices of Q, one algorithm

may perform better than the other, as for example: (i) if Q is

a multiple of R (autocorrelation of the input signal), LMS is

superior and (ii) if Q is a multiple of R−1, RLS is superior.

In order to improve adaptive filter performance, a convex

combination of one fast and one slow LMS filter was intro-

duced in [3]. The mean-square performance of this combi-

nation was analyzed via energy conservation relations in [4].
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Furthermore, it was shown that this structure is universal in

the mean-square error sense, presenting a worst case perfor-

mance as good as the best of its components, outperforming

both of them when the correlation between the a priori errors

of the component filters is low enough [4].

In order to obtain an algorithm that has good tracking per-

formance for a larger range of environments, we propose an

adaptive convex combination of one LMS and one RLS fil-

ter. The proposed combination should acquire the good initial

convergence properties of RLS and be able to perform as well

as the best of its components in regards to tracking behav-

ior, for all kinds of nonstationary environments. Moreover,

extending the steady-state analysis of [4], we obtain an ana-

lytical expression for the Excess Mean-Square Error (EMSE)

for stationary and nonstationary environments.

The paper is organized as follows. In Section 2, the pro-

posed combination is described. In Section 3, the steady-state

analysis is presented. Simulation results and the conclusions

are shown in sections 4 and 5, respectively.

2. PROBLEM FORMULATION

The convex combination of two adaptive filters proposed in

[3] is depicted in Figure 1. In this scheme, the output of the

overall filter is given by

y(n) = η(n)y1(n) + [1− η(n)]y2(n), (1)

where yi(n), i = 1, 2 are the outputs of the transversal filters,

i.e., yi(n) = uT (n)wi(n−1), u(n) ∈ R
M is the common re-

gressor vector, and wi(n−1) ∈ R
M are the weight vectors of

each length-M component filter. The mixing parameter η(n)
is modified via an auxiliary variable a(n−1) and a sigmoidal

function [3, 4], that is,

η(n) = sgm[a(n− 1)] =
1

1 + e−a(n−1)
, (2)

with a(n) being updated as

a(n)=a(n−1) + μae(n)[y1(n)−y2(n)]η(n)[1−η(n)], (3)
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Fig. 1. Adaptive convex combination of two transversal fil-

ters.

where e(n) = d(n) − y(n) and d(n) is the desired signal.

The sigmoidal function keeps η(n) within the desired range

[0, 1]. However, the update of a(n) in (3) stops whenever

η(n) is close to 0 or 1. To avoid this, the values of a(n) are

restricted to lie inside a symmetric interval [−a+, a+]. Thus,

a minimum level of adaptation is always guaranteed [4].

We assume that the coefficients w1 and w2 are adapted

respectively by the RLS and LMS algorithms, that is,

w1(n) = w1(n− 1) + R̂−1(n)u(n)e1(n) (4)

w2(n) = w2(n− 1) + μe2(n)u(n), (5)

where μ is the LMS step-size and ei(n) = d(n)− yi(n), i =
1, 2. A linear regression model is assumed, that is, d(n) =
uT (n)wo(n−1)+v(n), with wo(n−1) being the time-variant

optimal solution and v(n) an i.i.d. (independent and identi-

cally distributed) and zero mean random process with vari-

ance σ2
v = E{v2(n)}, which plays the role of a disturbance

uncorrelated with u(n) [1, Sec. 6.2.1]. The matrix R̂−1(n)
is obtained via the matrix inversion lemma [1, Eq. (2.6.4)]

applied to

R̂(n) = λR̂(n− 1) + u(n)uT (n), (6)

where 0 � λ < 1 is the forgetting factor, R̂(0) = εI, I is the

identity matrix, and ε is a positive constant [1]. The autocor-

relation matrix R � E{u(n)uT (n)} (E{·} is the expectation

operator) is related to R̂(n) via

R = (1− λ)E{R̂(n)}. (7)

3. TRACKING ANALYSIS

We assume that in a nonstationary environment, the variation

in the optimal solution wo follows the random-walk model

[1, p. 359], that is,

wo(n) = wo(n− 1) + q(n). (8)

In this model, q(n) is an i.i.d. vector with positive-definite au-

tocorrelation matrix Q = E{q(n)qT (n)} and is independent

of the initial conditions {wo(−1),w(−1)} and of {u(l)} for

all l < n [1, Sec. 7.4].

One measure of the filter performance is given by the

EMSE, defined as

ζ � lim
n→∞E{e2

a(n)}, ea(n) = uT (n)w̃(n− 1),

and w̃(n − 1) = wo(n − 1) −w(n − 1). The a priori error

ea(n) of the overall scheme can be written as a function of

the a priori errors of the component filters, that is,

ea(n) = η(n)ea,1(n) + [1− η(n)]ea,2(n), (9)

where ea,i(n) = uT w̃i(n−1) and w̃i(n−1) = wo(n−1)−
wi(n− 1), i = 1, 2.

Using the energy conservation approach of [1, Ch. 7], the

EMSE of RLS (component 1 of the combination), in a non-

stationary environment, is given by [1, Eq. (7.10.18)]

ζ1 =
σ2

v(1− λ)M +
1

(1− λ)
Tr(QR)

2− (1− λ)M
, (10)

in which Tr(A) stands for the trace of the matrix A. For LMS

(component 2), we have [1, Eq. (7.5.9)]

ζ2 =
μσ2

vTr(R) + μ−1Tr(Q)
2− μTr(R)

. (11)

Using the same arguments of [4, Sec. III], it is possible

to show that the considered scheme is universal in the mean

square error sense. Thus, when RLS outperforms LMS in the

steady-state, the behavior of the overall filter will be close to

that of RLS and ζ ≈ ζ1. On the other hand, when LMS is

superior, ζ ≈ ζ2. Moreover, there are situations where the

combination will outperform both of them. In this case, the

EMSE of the overall filter will be close to [4, Eq. (33)]

ζ ≈ ζ12 +
Δζ1Δζ2

Δζ1 + Δζ2
, (12)

where ζ12 is the cross-EMSE , defined as

ζ12 � lim
n→∞E{ea,1(n)ea,2(n)}, (13)

and Δζi = ζi − ζ12, i = 1, 2.

The EMSE of the overall filter is the minimum of the val-

ues calculated by the expressions (10), (11), and (12).

Analytical expressions for ζ12 have not been computed

before for combinations of LMS and RLS. In order to evaluate

ζ12, we first subtract both sides of (4) and (5) from wo(n).
Using (8), we arrive at

w̃1(n)− q(n) = w̃1(n− 1)− R̂−1(n)u(n)e1(n), (14)

w̃2(n)− q(n) = w̃2(n− 1)− μe2(n)u(n). (15)
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In the sequel, we multiply the transpose of (15) by (14), using

R̂(n) as a weighting matrix. After simple algebraic manipu-

lations, we obtain a long expression and take the expectations

of both of its sides. To simplify the resulting expression, the

following assumptions are employed:

A1. In steady state,

E{w̃T

2 (n)R̂(n)w̃1(n)}=E{w̃T

2 (n−1)R̂(n)w̃1(n−1)}.
This assumes that the filters are operating in stable con-

ditions, and have reached steady-state.

A2. From relation (7) and the assumed independence be-

tween q(n) and the regressor u(n), it follows that, in

steady-state,

E{qT (n)R̂(n)q(n)} =
Tr(QR)
1− λ

.

A3. ‖u(n)‖2 is independent of the a priori errors in steady-

state.

This assumption, usually called separation principle, is very

used in steady-state analysis of adaptive algorithms [1, Sec.

6.5.2]. Since ei(n) = ea,i(n) + v(n), i = 1, 2 and v(n) is a

zero mean process, which is independent of the a priori errors

and of the regressor vector, an immediate consequence of the

separation principle is that ‖u(n)‖2 and ei(n), i = 1, 2 are

independent, when n→∞.

A4. In steady-state,

μE{e2(n)uT (n)R̂(n)w̃1(n− 1)} ≈ μTr(R)
(1− λ)M

ζ12.

To obtain this approximation, we assume that the regressor

u(n) follows the model proposed in [5] — since the most

important characteristic of u(n) for adaptive filters is its au-

tocorrelation matrix, we use a simple model that retains the

correct autocorrelation, but is easy to analyze:

u(n) = s(n)ū(n),

where ū(n) may point to the direction of each of the eigen-

vectors of R with equal probability, i.e.,{
Pr{s(n) = ±1} = 0.5, (±1 have equal probab.)

Pr{ū(n) =
√

Mλibi} = 1
M , i = 1 . . . M.

Vector bi is a unit-norm eigenvector of R with respect to

eigenvalue λi. Since R is symmetric and positive-definite,

it follows that bT
i bj = δi,j . Variables s(n) and ū(n) are in-

dependent from each other, and are also assumed i.i.d.. In this

case, we get, using (7) and approximating R̂ by its mean,

uT (n)R̂(n) ≈ uT (n)R
1− λ

,

and the model for u(n) implies that uT (n)R=λiuT (n) with

probability 1/M . Therefore, the expectation in Assumption

A4 will take the average of the eigenvalues of R, and we ob-

tain the desired result.

The simulations in next section confirm that the assump-

tions are reasonable. Considering now the random-walk model

for q(n) and Assumption A1, we get

− E{qT (n)R̂(n)q(n)} ≈ −E{ea,2(n)e1(n)}−
μE{e2(n)uT (n)R̂(n)w̃1(n− 1)}+
μE{e1(n)e2(n)uT (n)u(n)}. (16)

Using A2-A4, after some algebra in (16), we arrive at

ζ12 =
μσ2

vTr(R) +
Tr(QR)
1− λ

1 + μTr(R)
[

1
(1− λ)M

− 1
] . (17)

In stationary environments, the expressions can be simplified,

making Q = 0.

4. SIMULATION RESULTS

To verify the behavior of the proposed scheme, we consider a

system identification application. The initial optimal solution

is formed with M = 5 independent random values between 0

and 1, and is given by

wT

o (0) = [0.5349 0.9527 −0.9620 −0.0158 −0.1254].

The regressor u(n) is obtained from a process u(n) as

uT (n) = [u(n) u(n−1) · · · u(n−4)], where u(n) is gen-

erated with a first-order autoregressive model, whose transfer

function is
√

1− α2/(1 − αz−1). This model is fed with an

i.i.d. Gaussian random process, whose variance is such that

Tr(R) = 1. Moreover, additive i.i.d. noise v(n) with vari-

ance σ2
v = 0.01 is added to form the desired signal.

Figure 2 shows the EMSE and E{η(n)} estimated from

the ensemble-average of 400 independent runs for RLS, LMS,

and their convex combination, with λ = 0.95, μ = 0.01,

μa = 100, and a+ = 4. At iteration n = 35000, ma-

trix Q is changed from Q = β2R to Q = β2R−1, with

β = 0.001. As RLS presents faster convergence than LMS,

the combined scheme performs close to RLS during the first

6000 iterations. After the initial convergence, LMS presents

better tracking performance than that of RLS. As predicted

by the analysis, the proposed scheme performs close to LMS

and E{η(n)} ≈ 0. When the matrix Q becomes a multi-

ple of R−1, this behavior changes: RLS becomes superior to

LMS and the combination performs slightly better than RLS,

as shown in the figure and predicted by the analysis. In this

case, E{η(n)} ≈ 0.75, that is, LMS plays an useful role in

the combination, providing a slight improvement to the over-

all performance in relation to that of RLS.
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Fig. 2. a) EMSE for RLS, LMS and their convex combination

and b) ensemble-average of η(n); λ = 0.95, ε = 20, μ =
0.01, μa = 100, a+ = 4, α = 0.8, β = 0.001; mean of 400

independent runs. In a), the solid lines represent the predicted

values of ζ and the dashed line is the predicted value of ζ1.

To verify the validity of the tracking analysis, we depict,

in Figure 3, the EMSE for different values of β2, consider-

ing the theoretical and experimental results for the convex

combination and RLS, and the theoretical results for LMS.

We assume Q = β2R−1, λ = 0.92, μ = 0.04, μa = 100,

a+ = 4 and the ensemble-average of 50 independent runs for

the experimental curves. The simulation results are in good

agreement with the analysis. This agreement also occurs for

other kinds of nonstationary environments, with Q = β2I and

Q = β2R. We can also observe that, from β2 = 5× 10−7 to

β2 = 10−5, the convex combination outperforms both com-

ponent filters.

We should notice that the cross-EMSE, predicted by (17),

is not always in a good agreement with experimental results.

However, through exhaustive simulations, we observe that the

EMSE of the complete scheme is not very sensitive to varia-

tions on the approximation to ζ12 (however, this term cannot

be simply disregarded). Thus, using (17), in all our simula-

tions, we observed good agreement between theoretical and

experimental EMSE. Note also that the small disagreement

between our model and the simulations observed in Figure 3

for large β2 is due to an imprecision in the model for RLS:

this can be seen by comparing the theoretical and simulation

curves for RLS alone.
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Fig. 3. EMSE for different values of β2 considering the the-

oretical and experimental results for the convex combination

and the theoretical results for LMS and RLS, with λ = 0.92,

ε = 12.5, μ = 0.04, μa = 100, a+ = 4, α = 0.8; mean of 50

independent runs.

5. CONCLUSIONS

In order to take advantage of the fact that RLS and LMS

may outperform each other in different nonstationary scenar-

ios, we propose a convex combination of both algorithms that

performs at least as well as the best component filter. Using

an energy conservation relation, the tracking analysis of the

convex combination of two LMS filters was extended for the

proposed scheme. Close agreement between analytical and

simulation results for the EMSE of the overall scheme was

observed.
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