
DESIGN OF 2-D DOUBLY COMPLEMENTARY FILTERS BASED ON NONSYMMETRIC
HALF-PLANE ALLPASS FILTERS

Yuan-Hau Yang and Ju-Hong Lee

National Taiwan University
Graduate Institute of Communication Engineering

No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, TAIWAN.
d92942011@ntu.edu.tw, juhong@cc.ee.ntu.edu.tw

ABSTRACT

A parallel-connected structure based on recursive nonsym-
metric half-plane (NSHP) digital allpass lters is presented
for designing two-dimensional (2-D) recursive doubly com-
plementary (DC) lters. First, the theory of 2-D recursive
digital allpass lters (DAFs) with NSHP support region for
lter coef cients is developed. Then, the design problem is
appropriately formulated to result in a simple optimization
problem that minimizes the phase error in the least-squares
(L2) sense with a closed-form solution. The novelty of the
presented 2-D NSHP DAFs structure is that it possesses the
advantage of better performance in designing DC lters over
existing 2-D structures based on quarter plane (QP) DAFs and
tremendously saves the computational complexity for design-
ing sampling rate converters. Finally, a design example is
provided for conducting illustration and comparison.

Index Terms— Doubly complementary, allpass lter, non-
symmetric half-plane, stability.

1. INTRODUCTION

Recently, the extension of the 1-D allpass structure to the
design of 2-D recursive digital lters has been widely con-
sidered in the literature [1], [2]. They presented the tech-
nique for the design of 2-D recursive circularly symmetric
lowpass lters (CS-LPF) based on the parallel combination
of allpass sub lters (PCAS) with quarter-plane (QP) support
region. Two PCAS structures are cascaded to remove the un-
wanted passband for designing CS-LPF. However, the PCAS
structure composed of QP DAFs is not as general as that com-
posed of NSHP DAFs.
In this paper, 2-D DC lters, composed of parallel con-

nected nonsymmetric half-plane (NSHP) allpass sub lters, are
presented. It has been shown in [3] that 2-D recursive NSHP
lters outperform 2-D recursive QP lters in terms of approx-
imating more general frequency response speci cation. We
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rst develop the results of 2-D recursive NSHP digital all-
pass lters (DAFs). The stability of the designed 2-D recur-
sive NSHP DAFs is guaranteed by focusing the design prob-
lem on approximating the desired phase responses that satisfy
some stability constraints on the phase of 2-D recursive lters.
Several important properties of the developed 2-D recursive
NSHP DAFs are investigated. Then, two 2-D recursive NSHP
DAFs are parallel connected to develop the 2-D recursive DC
lters (DCFs).
With prescribed phase characteristics, the design problem

based on the phase error is formulated. After some algebraic
manipulation, a linear objective function in the allpass co-
ef cients is presented. A closed-form solution is derived to
minimize the phase error in the least-squares sense ef ciently
and it can approximately satisfy the desired magnitude and
approximately linear phase characteristics at the same time.

2. 2-D IIR NSHP ALLPASS FILTERS

2.1. Properties of 2-DRecursive NSHPDigital Allpass Fil-
ters

For a 2-D recursive DAF with orderM ×N , its transfer func-
tion is given by

A (z1, z2) = z−M
1 z−N

2

D
(
z−1
1 , z−1

2

)
D (z1, z2)

(1)

The above equation implies that the allpass functionA (z1, z2)
is completely determined by the denominator polynomial. Let
the phase response of A (z1, z2) and that of D (z1, z2) be
θ (ω1, ω2) and φ (ω1, ω2), respectively, and we can obtain

φ (ω1, ω2) = − [Mω1 + Nω2 + θ (ω1, ω2)] /2 (2)

Here, we consider the 2-D IIR allpass lter with nonsym-
metric half-plane (NSHP) support region. The denominator
polynomialD (z1, z2) of A (z1, z2) is given by

D (z1, z2) =
M∑

m=0

d (m, 0) z−m
1 +

M∑
m=−M

N∑
n=1

d (m,n) z−m
1 z−n

2

(3)
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Based on the frequency response of (1), we investigate the
frequency characteristics of 2-D recursive DAFs and present
several important properties as follows:
Property 1. The phase response φ (ω1, ω2) ofD

(
ejω1 , ejω2

)
is equal to zero at the frequency points (termed as the crucial
points ΩCP in [2]) in the (ω1,ω2) plane.
Property 2. The frequency response of the 2-D recursive

NSHP DAF A
(
ejω1 , ejω2

)
of (1) is restricted to 1 or -1 at the

CPs.
It is revealed by Property 2 that some unwanted passbands

or stopbands may be induced. Therefore, the values ofM and
N for the orders of the 2-D recursive NSHP DAFs must be
appropriately speci ed to avoid the possible unwanted pass-
bands or stopbands.

2.2. Stability of 2-D Recursive Allpass Filters

A necessary and suf cient condition that guarantees the sta-
bility of a 1-D IIR DAF [4] is extended to 2-D cases [5], i.e.∫ π

0

− d

dω1
arg

[
A

(
ejω1 , ejω2

)]
dω1 = Mπ, −π ≤ ω2 ≤ π

(4)
and∫ π

0

− d

dω2
arg

[
A

(
ejω1 , ejω2

)]
dω2 = Nπ, −π ≤ ω1 ≤ π

(5)
By enforcing a desired phase response θd (ω1, ω2) to satisfy
these constraints, we can neglect the stability problem and
focus on the minimization problem only.

3. DOUBLY COMPLEMENTARY (DC) FILTER PAIR

We consider the 2-D DC lters as follows:

G
(
ejω1 , ejω2

)
=

A1

(
ejω1 , ejω2

)
+ A2

(
ejω1 , ejω2

)
2

(6)

and

H
(
ejω1 , ejω2

)
=

A1

(
ejω1 , ejω2

) − A2

(
ejω1 , ejω2

)
2

(7)

Based on (6) and (7), the 2-D DC lters are implemented in
the form of the sum and difference of two allpass lters as
illustrated in Fig. 1. In this paper, the 2-D recursive NSHP
DAF proposed in previous section is applied to construct the
2-D DC lter pair.
Let the frequency response of the 2-D recursive NSHP

DAF of (1) be expressed by

Ai

(
ejω1 , ejω2

)
= ejθi(ω1,ω2), i = 1, 2 (8)

Substituting (8) into (6) yields

G
(
ejω1 , ejω2

)
= 1

2

[
A1

(
ejω1 , ejω2

)
+ A2

(
ejω1 , ejω2

)]
= 1

2

[
ejθ1(ω1,ω2) + ejθ2(ω1,ω2)

]
=cos {[θ1 (ω1, ω2)−θ2 (ω1, ω2)] /2} ej[θ1(ω1,ω2)+θ2(ω1,ω2)]/2

(9)
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Fig. 1. Implementation of the 2-D doubly complementary
lter pair.

Because of the equation given by (2), (9) is further rewritten
as

G
(
ejω1 , ejω2

)
= cos[−M1−M2

2 ω1 − N1−N2
2 ω2

−φ1 (ω1, ω2) + φ2 (ω1, ω2)] × exp{j[−M1+M2
2 ω1

−N1+N2
2 ω2 − φ1 (ω1, ω2) − φ2 (ω1, ω2)]}

(10)

The frequency response of the complementary lterH(z1, z2)
can be obtained in the similar manners.
It is noted that G

(
ejω1 , ejω2

)
and H

(
ejω1 , ejω2

)
are si-

multaneously determined by θm (ω1, ω2) and θp (ω1, ω2), where

θm(ω1, ω2)=−M1−M2

2
ω1−N1−N2

2
ω2

−φ1(ω1, ω2)+φ2(ω1, ω2) (11)

and

θp(ω1, ω2)=−M1+M2

2
ω1−N1+N2

2
ω2

−φ1(ω1, ω2)−φ2(ω1, ω2) (12)

It is revealed in (11) and (12) that the phase responses of de-
nominator polynomials φ1 (ω1, ω2) and φ2 (ω1, ω2) are also
characterized by θm (ω1, ω2) and θp (ω1, ω2). Therefore, the
design problem of DC ltersG

(
ejω1 , ejω2

)
andH

(
ejω1 , ejω2

)
is equivalent to approximate the phase responses of denomi-
nators while the desired θm,d (ω1, ω2) and θp,d (ω1, ω2) are
speci ed. As a result, the design problems can be formulated
as follows:∥∥arg

{
Di

(
ejω1 , ejω2

)} − φi,d (ω1, ω2)
∥∥p

, i = 1, 2 (13)

where ‖x‖p means the p-th norm of x.

4. PROPOSED DESIGN TECHNIQUE

In this section, we present a design technique for solving the
resulting minimization problem of (13). With some alge-
braic manipulation, the objective function given by (13) can
be rewritten as shown in the following:

Minimize

∥∥∥∥∥
∑∑

(m,n)∈R−(0,0)

di(m,n) sin[mω1+nω2

+φi,d(ω1, ω2)]+sin[φi,d(ω1, ω2)]

∥∥∥∥∥
p

(14)
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Fig. 2. Passband and stopband for the design of
G

(
ejω1 , ejω2

)
.

(14) can be further formulated in the following matrix
form:

Minimize ‖Uidi − si‖p (15)

where di represents an unknown coef cient vector given by

di = [di(M, N), di(M − 1, N), . . . , di(−M,N)
, di(M, N − 1), di(M − 1, N − 1), . . . , di(−M, N − 1)
, ..., di(M, 0), di(M − 1, 0), . . . , di(1, 0)]T

(16)
where the superscript T is the matrix-transpose operation.
Correspondingly, the rth row of the matrixUi in (15) can be
expressed as shown in (17) where the frequency pair (ω1r, ω2r)
represents the rth uniformly sampled frequency grid point in
the interesting frequency band. The rth element of column
vector si is given by

si,r = − sin (φi,d (ω1r, ω2r)) (18)

If p=2 in (15), i.e., a least-squares solution of the proposed
objective function is considered, we can obtain the closed-
form solution which minimizes ‖Uidi − si‖2 as follows

d=
i

(
UT

i Ui

)−1
UT

i si (19)

5. APPLICATION IN SAMPLING STRUCTURE
CONVERSION

It is shown that the diamond-shaped decimation/interpolation
lter are good candidates for conversion processing between
rectangular and hexagonal sampling structures because they

allow a maximum resolution in the horizontal and vertical di-
rections. The ideal diamond-shaped lter, which possesses
quadrantal symmetry, is characterized in a quarter plane as
illustrated in Fig. 2.
If we set ω1p +ω1s = ω2p +ω2s = π, the passband of the

shifted version ofG
(
ejω1 , ejω2

)
, i.e.,G

(
ej(ω1−π), ej(ω2−π)

)
,

is located in the passband of H
(
ejω1 , ejω2

)
. Under this con-

dition, some useful properties that tremendously save the de-
sign complexity are presented in the following. From (6), we
have

G(ej(ω1−π), ej(ω2−π))
= 1

2

[
A1(−ejω1 ,−ejω2)+A2(−ejω1 ,−ejω2)

] (20)

Combined with the complementary lterH
(
ejω1 , ejω2

)
given

by (7), (20) can be further rewritten as

G(ej(ω1−π), ej(ω2−π))

=
{

H(ejω1 , ejω2), forM1+N1: even andM2+N2: odd
−H(ejω1 , ejω2), forM1+N1: odd andM2+N2: even

(21)
with

di(m,n) = 0, form + n is odd. (22)

G(ejω1 , ejω2) and its shifted versionG(ej(ω1−π), ej(ω2−π)) also
possess the DC properties, i.e., the frequency response of
G (z1, z2) possesses the DC symmetry with respect to (ω1, ω2) =
(π/2, π/2) in the rst quarter of the frequency plane. This
means that if G

(
ejω1 , ejω2

)
= 0 in the stopband, and then

the frequency response of G (z1, z2) becomes 1 in the pass-
band. Therefore, we only need to approximate the passband
or stopband response in the design of G (z1, z2). Moreover,
(22) indicates that about half of Ai (z1, z2)’s coef cients are
zero. Both advantages lead to tremendous savings in compu-
tational burden.

6. DESIGN EXAMPLE

In this section, we consider the design example of the diamond-
shaped lters illustrated in Fig. 2 with ω1p = π/2, ω2p = π,
and ω1p + ω1s = ω2p + ω2s = π. Substituting the following
desired responses

θm,d (ω1, ω2) = 0 (23)

and

θp,d (ω1, ω2) = −M1 + M2

2
ω1 − N1 + N2

2
ω2 (24)

into (11) and (12) yields the desired denominator phase re-
sponses for (ω1, ω2) ∈ Ωp. Then, the proposed design tech-
nique discussed in Section 4 is applied to nd the coef cients
ofA1 (z1, z2) andA2 (z1, z2), respectively. The orders of two
recursive NSHP DAFs are set to 4 × 2 and 3 × 2, respec-
tively. By solving the closed-form solution given by (19),
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Ui,r =
[sin(Mω1r+Nω2r+φi,d(ω1r, ω2r)), sin((M−1)ω1r+Nω2r+φi,d(ω1r, ω2r)), . . . , sin(−Mω1r+Nω2r+φi,d(ω1r, ω2r)),
sin(Mω1r+(N−1)ω2r+φi,d(ω1r, ω2r)), sin((M−1)ω1r+(N−1)ω2r+φi,d(ω1r, ω2r)), . . . ,
sin(−Mω1r+(N−1)ω2r+φi,d(ω1r, ω2r)), . . . , sin(Mω1r+φi,d(ω1r, ω2r)), sin((M−1)ω1r+φi,d(ω1r, ω2r)), . . . ,
sin(ω1r+φi,d(ω1r, ω2r))]

(17)
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Fig. 3. Magnitude response of G (z1, z2).

Fig. 3 shows the resultant magnitude response of the de-
signed diamond-shaped lter. Table 1 lists the signi cant per-
formance parameters de ned as follows: passband magnitude
mean-squared errors (PMSE), stopbandmagnitude mean-squared
errors (SMSE), passband phase mean-squared errors (PPMSEi),
and stopband phase mean-squared errors (SPMSEi). For com-
parison, the design example is also implemented by using the
2-D PCAS structure with QP support region presented in [1],
[2]. The orders of two recursive QP DAFs are set to 7×2 and
6 × 2, respectively. As shown in Table 1, the design using 2-
D DAFs with NSHP support shows more satisfactory perfor-
mances than that with QP support and con rms the generality
of NSHP lters.

7. CONCLUSION

This paper has presented a technique for the design of sam-
pling rate converters based on 2-D DAFs composed of 2-D
NSHP DAFs. The design problem is rs formulated as a lin-
ear optimization problem of an appropriate objective function
for the phase response using the least-squares (L2) criteria.

Table 1. Signi cant performance parameters.
NSHP QP

PMSE 7.79579×10−8 5.13262×10−6

SMSE 3.12723×10−4 1.83256×10−3

PPMSE1 3.03131×10−5 1.56331×10−4

PPMSE2 2.38336×10−4 1.31271×10−3

SPMSE1 3.01082×10−5 1.55875×10−4

SPMSE2 2.36940×10−4 1.29814×10−3

Stopband attenu-
ation (dB)

21.47302 11.29495

No. of indepen-
dent coef cients

19 21

The spectral factorization method [3] is utilized to verify the
stability of the designed 2-D NSHP DAFs. Very small sta-
bility errors indicate that the stability of our design has been
guaranteed.
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