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ABSTRACT

A wide variety of optimization problems involving nonnega-
tive polynomials or trigonometric polynomials can be formu-
lated as convex optimization problems by expressing (or re-
laxing) the constraints using sum-of-squares representations.
The semide nite programming problems that result from this
formulation are often dif cult to solve due to the presence of
large auxiliary matrix variables. In this paper we extend a
recent technique for exploiting structure in semide nite pro-
grams derived from sum-of-squares expressions to multivari-
ate trigonometric polynomials. The technique is based on
an equivalent formulation using discrete Fourier transforms
and leads to a very substantial reduction in the computational
complexity. Numerical results are presented and a compari-
son is made with general-purpose semide nite programming
algorithms. As an application, we consider a two-dimensional
FIR lter design problem.

Index Terms— Optimization methods, Multidimensional
digital lters, Discrete transforms

1. INTRODUCTION

Recently, there has been a great deal of interest in semide nite
programming (SDP) for optimization problems over polyno-
mials or pseudo-polynomials (e.g., trigonometric polynomi-
als). The basic idea is to replace the constraint that a poly-
nomial is nonnegative on (a subset of) its domain by the con-
straint that it is a sum-of-squares (SOS). The nonnegativity of
the polynomial and the SOS condition are equivalent for uni-
variate polynomials. In the multivariate case useful suf cient
conditions for nonnegativity are obtained. An optimization
problem with SOS constraints is equivalent to an SDP, a con-
vex problem which can be solved ef ciently (in polynomial
time) using interior-point solvers.
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A wide variety of applications can be found in signal pro-
cessing, control, combinatorial and global optimization [1, 2,
3, 4, 5]. At the moment, however, these applications are often
limited by the large size of the SDPs that result from the SOS
formulation. This is due to the need to introduce large matrix
variables with dimensions that grow rapidly with the number
of variables in the multivariate polynomials. Hence there is a
need for specialized SDP algorithms that exploit structure in
multivariate SOS optimization problems.
Most research on exploiting structure in SDP has focused

on sparsity of the coef cient matrices [6]. Another approach
based on exploiting (dense) rank-one structure was studied
in [7, 8, 9] and found to be very well-suited for SOS opti-
mization. In this paper we extend the techniques proposed
in [9] to multivariate trigonometric polynomials. Our focus
on trigonometric polynomials is motivated by applications in
signal processing [2, 3], and by the theoretical advantages of
trigonometric basis functions in SOS optimization [10].

2. SOS RELAXATION OF POSITIVE POLYNOMIALS

For the sake of simplicity, we will limit the discussion to bi-
variate trigonometric polynomials. (However, all the results
extend to multivariate trigonometric polynomials.)
Let R be a bivariate trigonometric polynomial of degree

n = (n1, n2) ∈ Z2, with real symmetric coef cients xk =
x
−k:

R(ω) =
n∑

k=−n

xke−jkT ω. (1)

If we collect the independent coef cients xk (in some order)
in a vector x, this can be expressed asR(ω) = xT f(ω) where
f is a vector of basis functions. A fundamental result states
that if R is positive, then it can be expressed as an SOS of
trigonometric polynomials,

xT f(ω) =

r∑
k=1

|aT
k v(ω) + jbT

k w(ω)|2 (2)

where v andw are vectors of two-dimensional cosine and sine
basis functions (see [3, 10]). Equivalently, if R is positive, it
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can be expressed as

xT f(ω) = v(ω)T Xv(ω) + w(ω)T Y w(ω), (3)

for some X =
∑

k akaT
k � 0 and Y =

∑
k bkbT

k � 0. The
dimensions of v and w can be arbitrarily high, but to obtain a
suf cient condition for the positivity ofR, they can be limited
to a nite value given, for example, by the degree ofR. In that
case, the dimensions of v andw are roughlyN/2, whereN =
(n1 + 1)(n2 + 1). The “parity” of the degree n determines
the exact dimensions [3].
Equation (3) is a set of linear equations in the coef cients

x and the matrices X and Y . By equating coef cients of the
same terms on both sides, it can be written in the form

xk = tr(TkX) + tr(HkY ), (4)

where Tk and Hk are sparse symmetric matrices (see [3] for
details). This observation allows us to formulate the (bounded-
degree) SOS constraint (2), which is a suf cient condition
for positivity of R, as a semide nite programming constraint
[2, 3, 10]. Similar techniques are used in recent SDP re-
laxations of multivariate nonnegative polynomials [4, 5, 11].
A parametrization similar to (4) is used in these works, and
general-purpose SDP software such as SeDuMi [12] is used
to solve the resulting SDPs. Unfortunately, although the SDP
data matrices associated with (4) are very sparse, this spar-
sity is only exploited to a limited extent by current solvers.
For n = max{n1, n2}, the complexity of solving an SDP
with constraints (4) using existing general-purpose software
is typically close to O(n8).
An alternative formulation based on discrete transforms

was recently proposed in [9, 8], and shown to be very ef-
fective for single-variable SOS optimization problems. The
technique also applies to multivariate SOS expressions. We
rst note that (3) can be replaced by a nite set of linear equa-
tions, by sampling both sides on an appropriately de ned and
suf ciently dense grid ofM points,

xT f(ωi) = v(ωi)
T Xv(ωi) + w(ωi)

T Y w(ωi)

for i = 1, . . . , M . In matrix form, this is equivalent to

Fx = diag(V XV T + WY WT ).

The matrices F , V , andW represent discrete transforms that
map the coef cients of (pseudo-)polynomials to their sample
values. (In our application, they are two-dimensional DFT,
DCT, and DST matrices, respectively.) From the sample val-
ues y = Fx, the coef cient vector x can be obtained via the
corresponding inverse discrete transform x = Gy. This leads
to the following alternative to (4):

x = Gdiag(V XV T + WY WT ), X, Y � 0. (5)

The formulation (5) involves dense matrices. However, as we
will see in section 4, simple properties of the diag operator

can be exploited, leading to a substantial reduction in com-
putational complexity. For typical problems with bivariate
trigonometric polynomials and n = max{n1, n2}, we will
obtain a complexity of roughly O(n6).

3. APPLICATIONS

In the previous section, we reviewed how nonnegativity con-
straints on polynomials can be reformulated or relaxed as lin-
ear matrix inequalities (LMI), via SOS expressions. As a con-
sequence, we can formulate a wide variety of optimization
problems involving nonnegative polynomials as SDPs. As an
illustration, we discuss a two-dimensional FIR lter design
problem [2].
To represent the spectral mask constraints involved in the

lter design we refer to the following observation. We are in-
terested in suf cient conditions that guarantee that a trigono-
metric polynomial R is positive on a set of the form

D = {ω ∈ [−π, π]2 | Di(ω) ≥ 0, i = 1, . . . , l}, (6)

where Di is a trigonometric polynomial. An obvious suf -
cient condition is that it can be expressed as

R(ω) = S0(ω) +

l∑
i=1

Di(ω)Si(ω), (7)

where Si, i = 0, . . . , l, are sums of squares of trigonometric
polynomials. The condition is also necessary, but the degrees
of the SOS may be arbitrarily high. By expressing the coef -
cients of Si in the form (5), we can write (7) as a linear equa-
tion in the coef cients of R and 2(l +1) positive semide nite
matrices.
As a speci c example we consider the problem of design-

ing a 2-D zero-phase FIR lter

H(ω) =

n∑
k=−n

hke−jkT ω

with maximum attenuation δs in the stopband Ds, and subject
to a maximum allowable ripple δp in the passband Dp. The
passband and stopband are both parameterized using expres-
sions of the form (6). The optimization problem is

minimize δs

subject to |1−H(ω)| ≤ δp, ω ∈ Dp

|H(ω)| ≤ δs, ω ∈ Ds,
(8)

where δs and the lter coef cients of H are the optimization
variables. To solve the problem (8), we expand the constraints
as

R1(ω) = H(ω)− 1 + δp ≥ 0, ω ∈ Dp

R2(ω) = 1−H(ω) + δp ≥ 0, ω ∈ Dp

R3(ω) = H(ω) + δs ≥ 0, ω ∈ Ds

R4(ω) = H(ω)− δs ≥ 0, ω ∈ Ds.
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Each positive polynomialRi can now be represented in terms
of SOS polynomials as in (7). Using the LMI characteriza-
tion (5), we arrive at an SDP of the form

minimize qT y
subject to Adiag(CXCT ) + By = b

X � 0,
(9)

with a matrix variable X and a vector variable y. The prob-
lem parameters A, B, C, as well as the variable X are block
matrices with a small number (8(l+1) or 4(l+1)) of diagonal
blocks of order O(n2), where n = max{n1, n2}.
We refer to [2] for an overview of other applications, such

as nonlinear-phase magnitude lter design.

4. SDP ALGORITHM

The most well-known class of SDP algorithms is called the
primal-dual interior-point method (PD-IPM). Typically, PD-
IPMs take roughly 10 to 50 iterations to reach a solution with
a high accuracy. Their key feature is a set of nonlinear equa-
tions known as central path equations. At each iteration of the
algorithm the central path equations are linearized to form a
large system of linear equations referred to as Newton equa-
tions. The computation time spent to construct and solve the
Newton equations dominates the overall computing time.
The algorithm used in this paper is the extension of the

method proposed in [9], which is based on the interior-point
algorithm described in [13]. We restrict the discussion to the
solution of the Newton equations.
The Newton equations for (9) are

−T−1ΔXT−1 + CT diag(AT Δz)C = R, (10)
Adiag(CΔXCT ) + BΔy = r1, (11)

BT Δz = r2, (12)

where the scaling matrix T is positive de nite. The values
of T and the righthand sides change at each iteration. By
eliminating the variable ΔX from the rst equation and ap-
plying the identity diag(P diag(u)QT ) = (P ◦Q)u, the set
of equations (10) through (12) is reduced to

[
H B
BT 0

] [
Δz
Δy

]
=

[
r3

r2

]
, (13)

where
H = A

(
(CTCT ) ◦ (CTCT )

)
AT .

In this equation ‘◦’ denotes Hadamard (component-wise) prod-
uct, so the cost of constructing H grows cubically with the
matrix dimensions. It is therefore of the same order as the cost
of solving the system. This is an improvement by an order of
magnitude over general-purpose implementations, which do
not exploit the speci c structure in the equality constraints
of (9), and for which computing H is more expensive than
solving the reduced Newton system (13). We also note that

n SeDuMi + [3] DT SDP
5 0.07 0.10
7 0.21 0.37
9 1.03 1.15
11 3.15 2.97
13 9.16 6.78
15 24.4 14.1
17 49.1 26.2
19 47.2
21 80.6
23 132
25 212

Table 1. Solve time per iteration (in seconds) for problem (8).
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Fig. 1. Solution of the 2D lter design problem (8).

the matrix-matrix products in the de nition of H correspond
to two-dimensional discrete transforms. Exploiting this fact,
we can reduce the complexity of computing H even further
by employing fast transforms such as FFT.

5. RESULTS

We revisit the lter problem (8) with the design parameters
δp = 0.05,

Dp = {ω ∈ [−π, π]2 | Dp = cos ω1 + cos ω2 − cp ≥ 0}

Ds = {ω ∈ [−π, π]2 | Ds = cs − cos ω1 − cos ω2 ≥ 0}.

The speci cation produces a lowpass lter, and the choice for
the values cp and cs determines the “steepness” of the transi-
tion band. With values cp = 1, cs = 0.3, and n1 = n2 = 11,
we obtain the lter shown in gure 1. Its optimal attenuation
is approximately 69 dB.
For the same problem, but with varying lter lengths (n =

n1 = n2), we compare the computational complexity per iter-
ation of the discrete-transform-based SDP formulation to that
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Fig. 2. Plot of the results in table 1.

of the general-purpose SDP solver (SeDuMi) with the SDP
formulation discussed in [3]. There are 16 matrix variables of
size roughly (n/2)2.
The CPU times per iteration for the two methods are sum-

marized in table 1 and gure 5. Both solvers reached the solu-
tions in 16 to 26 iterations for all problem instances. It can be
veri ed that the complexity of SeDuMi is betweenO(n7) and
O(n8), while the discrete-transform-based SDP algorithm is
between O(n5) and O(n6). For problems with n ≥ 19 the
computing times by SeDuMi could not be recorded due to
“out-of-memory” error by Matlab under the computing envi-
ronment.
The experiments were conducted in Matlab 7.1 on a 3.0-

Ghz Pentium-4 PC with 3 GB of memory.

6. CONCLUSION

We have derived a discrete-transform-based SDP formula-
tion of a convex optimization problem over positive multi-
variate trigonometric polynomials. The SDP formulation has
the advantage of leading to a customized interior-point al-
gorithm implementation that reduces the computational com-
plexity signi cantly compared to general-purpose SDP solvers.
We applied the results to a two-dimensional lowpass lter de-
sign problem and benchmarked an interior-point implementa-
tion based on the new formulation against a popular general-
purpose SDP solver.
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