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ABSTRACT

A new design method for linear phase half-band diamond

(DS) and fan-shaped (FS) 2-D filters is proposed. A gen-

eral formulation for frequency mask constraints in different

shapes using 2-D trigonometric curves is developed. This

facilitates semi-definite programming (SDP) of moderate di-

mension for the design problem. Several examples are in-

cluded to illustrate advantages of our method.

Index Terms— Multidimensional digital filters, diamond

filter, fan filter.

1. INTRODUCTION

Two-dimensional (2-D) filter and filter banks have been found

in many applications of different fields (see e.g [1–7] and

references therein). There are two types of filters: separa-

ble one as a product of two 1-D filters [2] and non-separable

one [4–13]. Separable filters are easily designed but work

mostly for rectangular spectrum division. Non-separable fil-

ters are preferred for other shapes of spectrum divisions such

as diamond, fan etc. but their design is much more challeng-

ing [5,9,14]. The most important issues are: (i) the passband

shape is accurately handled; (ii) the transition band is narrow

enough; (iii) the peak-error in matching the ideal responses

at the passband and stopband of the filter response is really

small; (iv) the filter order is reasonable for efficient digital

implementation. Nonseparable filters can still be designed

from 1-D filters [8,9,15] with fast digital implementation but

the shape of the filter passband is not easily controlled. The

frequency sampling approach [14] can control the filter pass-

band shape more efficiently but the transition band must be

not so narrow to avoid singularity that may arise in interpo-

lation. Recently, the semi-definite programming (SDP) has

been applied to 2-D filter design [12, 13]. The SDP formu-

lation allow filters to explicitly meet specific specifications

without interpolation and thus is very flexible. However, un-

like the 1-D case [16], the main issue there is that the dimen-

sion of SDP formulation may grow up explosively even for

design of low-order filters. For instance, the dimension of

each Gram matrix variable used in [12] is a high-order poly-

nomial in filter-order. The masks for diamond-shaped filter

have also been particularly considered in [12] but for aca-

demic purpose or ”theoretical results” rather than practical

ones as emphasized in [12]. To avoid the curse of dimension-

ality arisen with the formulated SDPs, the diamond-shaped

and fan-shaped passbands have been described just by unique

first-order trigonometric polynomials (TPs) that are unlikely

for accurate description. A much more delicate issue of prac-

tical design such as relation between frequency cutoff and co-

efficients of trigonometric polynomial for both passband and

stopband description has not been addressed. It is also likely

that the designed filters in [12] have a wide transition band.

Some efficient SDP formulations of moderate dimension for

rectangular passband and stopband filter have been proposed

in [13]. The SDP dimension was also further reduced by us-

ing dual formulation. The designed filters in [13] also admit

fast digital implementation though they are nonseparable and

are not designed from 1-D filters. While the TPs for the exact

description of a rectangle in frequency domain are almost ob-

vious [13], they are not so easily derived for diamond shape

and fan shape description. There are no TPs for their exact

description and the TP description of moderate order for their

accurate approximation is of great interest. The purpose of

this paper is to provide such TP descriptions that lead to effi-

cient SDP formulations for diamond shape and fan shape fil-

ters, i.e. those SDPs of moderate dimension that can be com-

puted by existing SDP software. The richness and efficiency

of the proposed class of SDP formulations are clearly articu-

lated by the fact that compared with those designed by other

existing methodologies such as frequency sampling [14], our

designed filters have narrower transition bands, better both

the passband ripple and stopband attenuation while admitting

a fast implementation (i.e. they are of low complexity).

The paper is organized as follows. Section 2 is devoted to a

general strategy and SDP formulation for the 2-D filter de-

sign. They are concretized in Section 3 and Section 4 for

designing diamond and fan filters, respectively. Finally, Sec-

tion 4 gives some concluding remarks.

The notations used in this paper are rather standard, except

that 〈A〉 refers to the trace of a square matrix A, so 〈AB〉 =
〈BA〉 for any matrices A and B. By X � 0 (X > 0) we

mean a symmetric positive (strictly positive) definite matrix
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X. One of the main property of positive definite matrices that

will be often used in the paper is 〈XY〉 � 0 whenever X � 0
and Y � 0. By TPs, in this paper we refer to that involving

the trigonometric powers cos(iω1) cos(jω2).

2. GENERAL SDP FORMULATION

The paper focuses on the following frequency response of a
zero-phase four-fold filter H(z1, z2)

H(Ω) = ϕT
n (ω1)Xϕn(ω2) = 〈X,M(Ω)〉, (1)

where

Ω := (ω1, ω2),∈ [0, π]2, X = [xi�]
n
i,�=0,

ϕn(ωi) = (1, cos ωi, cos 2ωi, . . . , cos nωi)
T ,

M(Ω) = ϕn(ω1)ϕ
T
n (ω2).

The design of the filter H(z1, z2) involves a solution of the matrix X
of filter coefficients such that the frequency response H(Ω) satisfies

a given set of specifications and the following optimization based

design can be formulated

min
X

L�
i=1

〈M1iXM2iX
T 〉 − 〈MX〉 (2)

s.t. −δp � 〈XM(Ω)〉 − 1 � δp ∀Ω ∈ Ωp (3)

−δs � 〈XM(Ω)〉 � δs ∀Ω ∈ Ωs (4)

with some predefined matrices M1i > 0,M2i > 0 and M. Here

the quadratic objective (2) is an approximation of the minimal weighted-

square error Wp

�
Ωp

|H(Ω) − 1|2dΩ + Ws

�
Ωs

|H(Ω)|2dΩ, dΩ =

dω1dω2, Wp > 0, Ws > 0, while the semi-infinite constraints (3)-

(4) are the peak-error constrained |H(Ω) − 1| � δp, ∀Ω ∈ Ωp on

passband and |H(Ω)| � δs, ∀Ω ∈ Ωs in stopband.

Like [13] we aim at deriving effective SDP formulations for SI con-

straints (3)-(4), which accurately reflect the shapes of the passband

and stopband while not result on highly dimensional SDPs. We now

provide our strategy to resolve these two issues.

First, each region ΩI (I ∈ {p, s}) is described by TPs of the first

order

T (I)
1i (Ω) − b

(I)
i � 0; i = 1, 2, . . . , MI . (5)

Define Chebysev recursions

T
(I)
0i (Ω) = 1, T

(I)
1i (Ω) = T (I)

1i (Ω) − b
(I)
i ;

T
(I)
ji (Ω) = 2T

(I)

(j−1)i(Ω)T
(I)
1i (Ω) − T

(I)

(j−2)i(Ω), j = 2, 3, ...

(6)

Then, for m = [(n − 1)/2], the moment matrices are constructed

as

Ψ
(I)
i (Ω) =

�
���

1
T

(I)
1i (Ω)
....

T
(I)
mi (Ω)

�
���

�
���

1
T

(I)
1i (Ω)
....

T
(I)
mi (Ω)

�
���

T

. (7)

Further, with the definitions

Θi(Ω) = (T (I)
1i (Ω) − bi)Ψi(Ω) (8)

and

CI = {X ∈ R(n+1)×(n+1) : 〈XM(Ω)〉 ≡
MI�
i=1

〈Xi,Θi(Ω)〉,

Xi � 0,Ψi(Ω) � 0}, (9)

we then effective strengthen SIP (2)-(4) by the following SDP

min
X

(2) : X − (1 − δp)E1 ∈ Cp, −X + (1 + δp)E1 ∈ Cp

X + δsE1 ∈ Cs, −X + δsE1 ∈ Cs

(10)

where E1 ∈ R(n+1)×(n+1) with zero entries except E1(0, 0) =
1. It can be shown that SDP constraints (10) imply SI constraints

(3)-(4). It should be emphasized that the effectiveness of SDP (10)

is confirmed by simulations in the next sections with designing of

diamond and fan filters with narrow transition band. Moreover, due

the representation (9) for the filter coefficient matrix = X they admit

a fast implementation as well.

The dual cone C∗
I = {Y : 〈YX〉 � 0, ∀X ∈ Cα} is described by

SDP constraint

C∗
I = {Y ∈ R(n+1)×(n+1) : Θi(Y) � 0, Ψi(Y) � 0;

i = 1, . . . , MI} (11)

where Θi(Y) and Ψi(Y) are created from Θi(Ω) and Ψi(Ω) by

the variable change

yj� ← cos(jω1) cos(�ω2), j, � = 0, 1, 2, ..., n.

So the optimal solution Xopt of (10) is found from the dual SDP is

max
Y(i),Xopt

[〈((1 − δp)Y(1) − (1 − δp)Y(2) − δs(Y
(3)

+Y(4)))E1〉 −
L�

i=1

〈M1iXoptM2iX
T
opt〉] :

Y(1) ∈ C∗
p , Y(2) ∈ C∗

p , Y(3) ∈ C∗
s , Y(4) ∈ C∗

s ,

2
L�

i=1

M2iX
T
optM1i − M − Y(1) + Y(2) − Y(3) + Y(4) = 0

(12)

3. HALF-BAND DIAMOND FILTER DESIGN

The diamond filter (DF) with cutoff frequency at π/2 is also known

as a half-band 2-D filter.

Figure 1 depicts the passband (dotted) and the stopband (white)

of the ideal half-band DF (part (a)) and our designed DF (part (b)).

The cutoff frequency of the ideal passband and the stopband is (ω1c, ω2c) =

Fig. 1. Diamond four-fold filter

(π/2, π/2). In practical design, there must be a transition band be-

tween them. For the cutoff frequencies (ω1p, ω2p), ω1p = ω2p �
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Table 1. Performance comparison for DS filter

Specifications Our method NDFT method
δp 0.017 0.0189

δs 0.015 0.0184

ω1p 0.43π 0.36π
ω1s 0.67π 0.64π

π/2 for the passband and (ω1s, ω2s), ω1p < ω1s = ω2s � π/2
have been chosen. The width of the transition band is characterized

by the difference ω1s − ω1p between passband and stopband cutoff

frequencies.

Then diamond-shaped (DS) passband is approximately described by

cos ω1 + cos ω2 � dp; dp = 2 cos ω1p,
α1p � ω1 � 0, α1p = arccos(dp − 1);
α2p � ω2 � 0, α2p = arccos(dp − 1),

(13)

while the stopband is approximately described by

cos ω1 + cos ω2 � −ds; ds = −2 cos ω1s,
α1s � ω1 � π, α1s = arccos(1 − ds),
α2s � ω2 � π, α2s = arccos(1 − ds)

(14)

Note that the choice ω1p = π/2 (ω1s = π/2, resp.) will make (13)

((14), resp.) the exact description for the ideal passband (stopband,

resp.).

Therefore, we can write

Ωp ≈ {(ω1, ω2) : cos ω1 + cos ω2 � dp,
cos ω1 � dp − 1, cos ω2 � dp − 1}

Ωs ≈ {cos ω1 + cos ω2 � −ds,
cos ω1 � 1 − ds, cos ω2 � 1 − ds}.

and the first order polynomials T (I)
1i and constants b

(I)
i for (5) are

concretized for this cases as following

T (p)
11 − b

(p)
1 = cos ω1 + cos ω2 − dp,

T (p)
12 − b

(p)
2 = cos ω1 + cos ω2 + 2 − 2dp,

T (p)
13 − b

(p)
3 = (cos ω1 + 1 − dp)(cos ω2 + 1 − dp);

T (s)
11 − b

(s)
1 = − cos ω1 − cos ω2 − ds,

T (s)
12 − b

(s)
2 = − cos ω1 − cos ω2 + 2 − 2ds,

T (s)
13 − b

(s)
3 = (− cos ω1 + 1 − ds)(− cos ω2 + 1 − ds)

Figure 2 depicts the frequency response of the designed DF with size

19 × 19 with designed parameters given by Table 1. A comparison

of our result and that by the nonuniform discrete Fourier transform

(NDFT) [14] can be also revealed from this table: our filter is better

in term of small ripples over supported regions and narrow transi-

tion band while is of much lower complexity (as mentioned in the

previous sections)

4. FAN FILTER DESIGN

The fan filter (FF) is a special filter with directional sensitivity. There-

fore, FF can be used in many applications such as geoseismic data

processing. Although its shape is different from the diamond, the fan

shape masks can be similarly handled. Figure 3 depicts the passband

(dotted) and the stopband (white) of the ideal FF and that designed
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Fig. 2. Frequency response of the designed DF

Fig. 3. Fan four-fold filter

by our method. The cutoff frequency for the ideal passband and

stopband is (ω1c, ω2c) = π/2. With a choice of passband cutoff

frequency (ω1p, ω2p), π/2 � ω1p = π − ω2p and stopband cutoff

frequency (ω1s, ω2s), π/2 � ω1s = π − ω2s > ω1p, the passband

is approximately described by

cos ω1 − cos ω2 � dp, dp = 2 cos(ω1p),
α1p � ω1 � 0, α1p = arccos(dp − 1),
π � ω2 � α2p, α2p = arccos(1 − dp)

(15)

while the stopband is approximately described by

cos ω1 − cos ω2 � −ds, ds = −2 cos(ω1s),
π � ω1 � α1s, α1s = arccos(ds − 1),
α2s � ω2 � 0, α2s = arccos(1 − ds).

(16)

Again, the width of the transition band is characterized by the differ-

ence ω1s − ω1p and the choice ω1p = π/2 (ω1s = π/2, resp.) will

make (15) ((16), resp.) the exact description for the ideal passband

(stopband, resp.).

The first order polynomials T (I)
1i and constants b

(I)
i for (5) are con-
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Table 2. Performance comparison for FF

Specifications Our method NDFT method
δp 0.005 0.0051

δs 0.0025 0.0051

ω1p 0.42π 0.43π
ω1s 0.65π 0.57π

cretized for this cases as following

T (p)
11 − b

(p)
1 = cos ω1 − cos ω2 − dp,

T (p)
12 − b

(p)
2 = cos ω1 − cos ω2 + 2 − 2dp,

T (p)
13 − b

(p)
3 = (cos ω1 + 1 − dp)(− cos ω2 + 1 − dp);

T (s)
11 − b

(s)
1 = − cos ω1 + cos ω2 − ds,

T (s)
12 − b

(s)
2 = − cos ω1 + cos ω2 + 2 − 2ds,

T (s)
13 − b

(s)
3 = (− cos ω1 + 1 − ds)(cos ω2 + 1 − ds)

Figure 4 depicts the frequency response of the FF with size 19×19.

The specification parameters are given by table 2. As can be seen,

the ripples of passband and stopband are still very small, particularly

showing the efficiency of our method. As mentioned in Sections 1

and 2, our designed filter is of much lower complexity than that of

the same order designed by the frequency sampling one.
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Fig. 4. Frequency response of the designed FF

5. CONCLUSION

This paper has discussed a general technique for the design of half-

band DF and FF with frequency mask constraints. The most ad-

vantage of this technique is that filters are designed based on SDPs

of moderate size. The frequency mask specifications of diamond-

shaped and fan-shaped are assured in our setting. Numerical results

have manifested the viability of our approach and its advantages over

existing methods.
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