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ABSTRACT

Sequential quadratic programming is used to design high-performance
quincunx lter banks for image coding, where the resulting lter
banks have perfect reconstruction, linear phase, high coding gain,
good frequency selectivity, and certain prescribed vanishing-moment
properties. Design examples are presented and compared to various
previously proposed lter banks. The new lter banks are shown
to be highly effective for image coding, outperforming previously
proposed quincunx lter banks in most cases, and outperforming the
well-known 9/7 lter bank in some limited cases.

Index Terms— Multidimensional signal processing, optimiza-
tion methods, wavelet transforms, image coding

1. INTRODUCTION

Quincunx lter banks are two-dimensional (2D) two-channel non-
separable lter banks, and have been shown to be a highly effective
tool for image coding applications. In such applications, it is usually
desirable for the lter banks to have perfect reconstruction (PR), lin-
ear phase, high coding gain, good frequency selectivity, and certain
vanishing-moment properties. In the nonseparable case, however, it
is very dif cult to design lter banks with all of these properties.
Most of the existing design techniques employ a transformation of
variables [1]. Using these transformation-based methods, one can-
not explicitly control the 2D lter frequency responses. In this paper,
we show how one can design quincunx lter banks to have all of the
aforementioned properties via the lifting framework [2] and sequen-
tial quadratic programming (SQP) [3]. Although designs based on
the lifting framework have been proposed in [4, 5], these methods
only consider interpolating lter banks (i.e., lter banks with two
lifting steps). In this paper, we examine the more general case.

The remainder of this paper is structured as follows. Section 2
brie y comments on some notational conventions used herein. Sec-
tion 3 introduces quincunx lter banks and the aforementioned de-
sirable properties for such lter banks. Section 4 explains the de-
sign problem formulation. Design examples are presented in Sec-
tion 5 and their effectiveness for image coding is demonstrated in
Section 6. Finally, Section 7 concludes with a summary of our work
and some closing remarks.

2. NOTATION AND TERMINOLOGY

In this paper, the sets of integers, even integers, and real numbers
are denoted as Z, Ze and R, respectively. Matrices and vectors are
denoted by upper and lower case boldface letters, respectively. For
matrix multiplication, we de ne the product notation as N

k=M AAAk �
AAANAAAN−1 · · ·AAAM+1AAAM for N ≥ M. For convenience, a polynomial
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function of the elements of a vector xxx is simply referred to as a poly-
nomial function of xxx. Let nnn = [n0 n1]T and zzz = [z0 z1]T . Then,
we de ne |nnn| = n0 + n1 and zzznnn = zn0

0 zn1
1 . Furthermore, for a ma-

trix MMM = [mmm0 mmm1] with mmmk being the kth column of MMM, we de ne
zzzMMM = [zzzmmm0 zzzmmm1 ]T . In what follows, we will use MMM to denote the gen-
erating matrix

[
1 1
1 −1

]
of the quincunx lattice.

The Fourier transform of a sequence h is denoted as ĥ. A 2D
lter H with impulse response h is said to be linear phase with group

delay ccc if, for some ccc ∈ 1
2Z

2, h[nnn] = h[2ccc−nnn] for all nnn ∈ Z
2. For the

linear-phase lter H, its frequency response ĥ( ) can be expressed
as ĥ( )= e− j Tcccĥa( ), where ĥa( ) = nnn∈Z2 h[nnn]cos

[
T (nnn−ccc)

]
.

For convenience, we call ĥa( ) the signed amplitude response of
H. For two images x and xr of size N0 ×N1 with P bits per sam-
ple, we de ne the peak-signal-to-noise ratio (PSNR) as PSNR =
20log10

(
2P−1√
MSE

)
, where MSE = 1

N0N1 nnn
(
xr[nnn]− x[nnn]

)2.

3. QUINCUNX FILTER BANKS

Fig. 1 shows the canonical form of a quincunx lter bank, which
consists of analysis lters H0 and H1, synthesis lters G0 and G1,
and MMM-fold downsamplers and upsamplers. In wavelet-based image
coding, the lter bank is applied recursively to the lowpass channel,
resulting in an octave-band lter bank. For an L-level octave-band
lter bank, the equivalent nonuniform lter bank has L+1 channels

with analysis lters {H′i} and synthesis lters {G′i}. The analysis
lter transfer functions {H ′i (zzz)} are given by

H ′i (zzz) =

⎧⎪⎪⎨
⎪⎪⎩

L−1
k=0 H0

(
zzzMMM

k
)

i = 0

H1

(
zzzMMM

L−i
)

N−i−1
k=0 H0

(
zzzMMM

k
)

1≤ i≤ L−1

H1 (zzz) i = L,

and the synthesis lter transfer functions {G′i(zzz)} can be similarly
derived [6]. Next, we consider the relationships between quincunx
lter banks and the desirable properties identi ed in Section 1.

In image coding, it is often desirable for the lter banks to have
PR to facilitate the construction of a lossless compression system,
and linear phase to avoid phase distortion. Here, we introduce a
lifting-based parameterization of quincunx lter banks such that the
PR and linear-phase conditions are automatically satis ed. Fig. 2
shows the structure of the lifting realization of a quincunx lter bank.
Essentially, the lter bank is realized in its polyphase form, and the
analysis and synthesis ltering are each performed by a ladder net-
work of 2 lifting lters {Ak}. Due to the use of the lifting frame-
work, the PR condition is automatically satis ed. Given the lift-
ing lters {Ak}, the corresponding analysis lter transfer functions
H0(zzz) and H1(zzz) can be calculated as Hk(zzz)= Hk,0

(
zzzMMM

)
+z0Hk,1

(
zzzMMM

)
,

where

[
H0,0(zzz) H0,1(zzz)
H1,0(zzz) H1,1(zzz)

]
=

k=1

([
1 A2k(zzz)
0 1

][
1 0

A2k−1(zzz) 1

])
.

III  8971424407281/07/$20.00 ©2007 IEEE ICASSP 2007



H0(zzz)

H1(zzz)

↓MMM

↓MMM

↑MMM

↑MMM

G0(zzz)

G1(zzz)

+
x[nnn] x̂[nnn]y0[nnn]

y1[nnn]

Fig. 1. Quincunx lter bank (canonical form).
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Fig. 2. Lifting realization of a quincunx lter bank. (a) Analysis side
and (b) synthesis side.

The synthesis lter transfer functions G0(zzz) and G1(zzz) can then be
trivially computed as Gk(zzz) = (−1)1−kz−1

0 H1−k(−zzz).
With the lifting framework, the linear-phase property can also be

easily imposed if each of the lifting lters Ak has linear phase with

group delay ccck satisfying ccck = (−1)k
[ 1

2
1
2

]T
. With this choice of

lifting lters, the analysis lters H0 and H1 have linear phase with
group delays ddd0 = [0 0]T and ddd1 = [−1 0]T , respectively.

Let xxx denote a vector containing all independent coef cients of
the 2 lifting lters. Next, we examine the relationships between xxx
and the lter bank properties of interest (i.e., coding gain, frequency
selectivity, and vanishing moment properties), beginning with the
coding gain.

Coding gain is a measure of the energy compaction ability of
a lter bank. For an L-level octave-band quincunx lter bank, the
coding gain GSBC [7] is computed as

GSBC =
L

k=0
(AkBk/ k)− k ,

where Ak = mmm∈Z2 nnn∈Z2 h′k[mmm]h′k[nnn]r[mmm−nnn], Bk = k nnn∈Z2 g
′2
k [nnn],

0 = 2−L, k = 2−(L+1−k) for k = 1,2, . . . ,L, h′k[nnn] and g′k[nnn] are the
impulse responses of the equivalent analysis and synthesis lters H′k
and G′k, respectively, and r is the normalized autocorrelation of the
input. Depending on the source image model, r is given by

r[n0,n1] =

{ |n0|+|n1| for separable model√
n2

0+n2
1 for isotropic model,

where is the correlation coef cient (typically, 0.90 ≤ ≤ 0.95).
The coding gain is a nonlinear function of xxx.

In lter bank design problems, we also desire good frequency
selectivity to minimize aliasing between subbands. To quantify the
frequency selectivity, we de ne a frequency response error function
to measure the difference between the actual and desired frequency
responses. For a linear-phase lter Hk, the error function ehk

is de-
ned as

ehk
=

∫
[− , )2

W ( )
∣∣ĥak ( )−Dĥdk

( )
∣∣2 d ,

where ĥak ( ) is the signed amplitude response of Hk as de ned ear-
lier in Section 2, ĥdk

( ) is the desired frequency response with a
diamond-shaped passband/stopband, D is a scaling factor, andW ( )
is a weighting function used to control the relative importance of the
passband and stopband. In order for the lter Hk to have good fre-
quency selectivity, the error function is required to satisfy ehk

≤ hk
,

where hk
is a prescribed upper bound on the error. The constraints

on the frequency selectivity of the analysis lters H0 and H1 are
polynomial inequalities in xxx.

Now we consider the relationship between the lifting- lter coef-
cients and vanishing moments. The presence of vanishing moments

is important as it helps to reduce the number of nonzero coef cients
in the higher-frequency subbands, and improve the visual quality
of the reconstructed images for lossy compression. For quincunx
lter banks, to have N primal and Ñ dual vanishing moments, the

lowpass and highpass analysis lters H0 and H1 should have Nth-
and Ñth-order zeros at [ ]T and [0 0]T , respectively. Recall that,
due to the lifting parameterization employed, H0 and H1 are lin-
ear phase with group delays ddd0 and ddd1, respectively. Therefore, to
have N primal vanishing moments, the lowpass analysis lter co-
ef cients h0[nnn] should satisfy nnn∈Z2(−1)|nnn−ddd0|h0[nnn] (nnn−ddd0)

mmm = 0
for all |mmm| ∈ Ze and |mmm| < N. Similarly, to have Ñ dual vanishing
moments, the highpass analysis lter coef cients h1[nnn] should sat-
isfy nnn∈Z2 h1[nnn] (nnn−ddd1)

mmm = 0 for all |mmm| ∈ Ze and |mmm| < Ñ. Thus,
the conditions on vanishing moments are polynomial equations in
xxx. Moreover, for lter banks with two lifting lters A1 and A2, if
Ñ ≥ N, the conditions can be expressed as a set of linear equations
in the lifting- lter coef cients [5].

4. DESIGN PROBLEM FORMULATION

In our design problem, we use the lifting parameterization to satisfy
the PR and linear-phase conditions. Then, we maximize the coding
gain subject to constraints on frequency selectivity and vanishing
moments. The design problem is solved by SQP [3].

SQP is an effective tool for solving general nonlinear constrained
optimization problems of the form

minimize f (xxx)
subject to: ai(xxx) = 0 for i = 1,2, . . . , p, and/or

ck(xxx)≥ 0 for k = 1,2, . . . ,q,

where f (xxx), ai(xxx), and ck(xxx) are continuous functions, whose rst-
and second-order partial derivatives exist and are continuous. The
SQP method solves the constrained problem by iteratively solving
quadratic programming (QP) subproblems in a sequential manner.
The QP subproblems can be solved ef ciently using a number of
software packages, such as the MATLAB optimization toolbox and
the SeDuMi [8] package.

We begin with the design of lter banks having two lifting steps.
As mentioned earlier, in this case, the vanishing moment conditions
can be expressed as a linear system of equations in the lifting- lter
coef cient vector xxx given by

AAAxxx = bbb, (1)

where xxx ∈ R
n×1, AAA ∈ R

m×n with rank r, bbb ∈ R
m×1 and m < n. By

computing the singular value decomposition (SVD) of AAA = UUUSSSVVVT ,
the solutions to (1) can be parameterized as xxx = AAA+bbb+VVVr , where
AAA+ is the Moore-Penrose pseudoinverse of AAA, VVVr is a matrix com-
posed of the last n− r columns of VVV , and is an arbitrary vector
with n− r elements. In what follows, we will use as the design
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vector. In this way, the number of free variables is reduced from n
to n− r and the vanishing moment conditions are automatically sat-
is ed for any choice of . The coding gain function GSBC, and fre-
quency response error functions eh0 and eh1 can each be expressed
as a function of . Therefore, the design problem becomes

minimize − log10 [GSBC( )]
subject to: hk

( )− ehk
( )≥ 0 for k = 0,1.

(2)

The solution to (2) then leads to a lter bank with PR, linear phase,
high coding gain, good frequency selectivity, and certain prescribed
vanishing moment properties.

For lter banks with more than two lifting steps, the vanishing
moment conditions are no longer linear. We write the conditions as

ai(xxx) = 0 for i = 1,2, . . . ,
⌈
Ñ/2

⌉2 + 	N/2
2, (3)

where ai(xxx) is a polynomial in xxx. In this case, the design problem
has equality constraints on vanishing moments and inequality con-
straints on frequency selectivity, and can be written as

minimize − log10 [GSBC(xxx)]

subject to: ai(xxx) = 0 for i = 1,2, . . . ,
⌈
Ñ/2

⌉2 + 	N/2
2,
hk

(xxx)− ehk
(xxx)≥ 0 for k = 0,1.

(4)

The equality constraints in (3) are only approximately satis ed.
That is, the moments associated with the desired vanishing moment
conditions are small but not necessarily zero. To further reduce the
moments in question, we can apply an adjustment step after obtain-
ing the solution xxx∗ to (4). This step is formulated as follows. When
‖ xxx‖ is small, the linear approximation of ai(xxx∗ + xxx) is obtained
by ai(xxx∗+ xxx) = ai(xxx∗)+gggT

i xxx, where gggi is the gradient of ai at the
point xxx∗. This adjustment process can then be formulated as the fol-
lowing optimization problem:

minimize
i=1,2,...,	Ñ/2
2

+	N/2
2
[
ai(xxx∗)+gggT

i xxx
]2

subject to: ‖ xxx‖ ≤ ,
(5)

where is a prescribed small value. The problem in (5) is equivalent
to a second-order cone programming (SOCP) problem, which can
be solved ef ciently using SeDuMi [8]. Having obtained such a xxx,
we then update the solution to xxx∗+ xxx. After this adjustment step,
the moments in question are typically very close to zero, as will be
illustrated by the design example (i.e., SQP2) in the next section.

5. DESIGN EXAMPLES

To demonstrate the effectiveness of the SQP-based design method,
we now present two design examples. In the case of both designs, the
optimization is carried out for maximal coding gain, assuming a six-
level wavelet decomposition and an isotropic image model with cor-
relation coef cient = 0.95. Our rst design, which will be hence-
forth referred to as SQP1, employs two lifting steps, each having a
diamond support of 6× 6. Our second design, henceforth referred
to as SQP2, employs three lifting steps, each having a diamond sup-
port of 4×4. For comparison purposes, we consider four lter banks
designed by previously-proposed methods. The rst three of these
lter banks, referred to as KS, G62, and OPT1 in what follows, are

quincunx lter banks, while the fourth is the well-known separable
9/7 lter bank from the JPEG-2000 standard. The KS lter bank is
constructed using the technique of [5], the G62 lter bank is the so
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Fig. 3. Frequency responses of the lowpass (a) analysis and (b) syn-
thesis lters for the SQP1 lter bank.
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Fig. 4. Frequency responses of the lowpass (a) analysis and (b) syn-
thesis lters for the SQP2 lter bank.

called (6,2) lter bank proposed in [4], and the OPT1 lter bank
is one of the best lter banks designed using the SOCP-based algo-
rithms proposed in [6].

The coding gains and other important characteristics of the above
lter banks are shown in Table 1. Obviously, the optimal designs,

SQP1 and SQP2, have higher isotropic coding gains than the KS and
G62 lter banks. Furthermore, the SQP2 design also has a higher
coding gain than the 9/7 lter bank. For SQP2, although the mo-
ments in question are not exactly vanishing, they are on the order of
10−9 to 10−17, which is small enough to be considered as zero for
all practical purposes. The frequency responses of the lowpass lters
for SQP1 and SQP2 are shown in Figs. 3 and 4, respectively. We see
that these lowpass lters have good diamond-shaped passbands.

In [6], we proposed a SOCP-based method to design quincunx
lter banks for image coding. Although the SQP-based method pro-

posed herein and the SOCP-based method in [6] both work by itera-
tively solving subproblems, they treat the overall design problem in
very different ways. Next, we give two examples that compare the
performance of these two design methods.

In our rst example, we design lter banks which employ two
4× 4 lifting lters for maximal coding gain assuming an isotropic
model and three levels of decomposition. We apply the SQP- and
SOCP-based methods with 625 different initial points. From the 625

Table 1. Comparison of lter bank characteristics.
Name Support of Support of GSBC

lifting lters† analysis lters (dB) Ñ/N
SQP1 6×6, 6×6 13×13, 7×7 12.06 2 / 2
SQP2 4×4, 4×4, 4×4 9×9, 13×13 12.23 2 / 2
OPT1 6×6, 6×6 13×13, 7×7 12.06 2 / 2
KS 6×6, 6×6 13×13, 7×7 11.95 6 / 6
G62 6×6, 2×2 13×13, 11×11 11.64 6 / 2
9/7 2, 2, 2, 2 9, 7 12.09 4 / 4

†Support regions are diamond-shaped except for G62 and 9/7.
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Table 2. Comparison of SQP- and SOCP-based methods.
Case 1: two 4×4 Case 2: two 6×6
SQP SOCP SQP SOCP

Number of iterations 12.4 24.8 14.5 51.9
Execution time (s) 58.4 77.9 252.8 517.6
GSBC (dB) 11.12 11.12 11.15 11.15

Table 3. Percentage of cases where the SQP1 and SQP2 optimal
designs outperform the KS, G62, and OPT1 (quincunx) lter banks.

Filter banks KS G62 OPT1
SQP1 80% 95% 56%
SQP2 78% 96% 71%

optimization results, the SQP-based method converges with fewer
iterations than the SOCP-based one in 95.7% of the cases, and the
total execution time of the SQP-based method is less than that of the
SOCP-based one in 85.0% of the cases. The difference between the
two methods becomes more obvious for the design of lter banks
with two 6×6 lifting lters. In this case, we use 729 different initial
points. The SQP-based method converges faster than the SOCP-
based one in 96.8% of the cases, requiring fewer iterations than the
SOCP-based approach in 727 out of the 729 cases. Table 2 shows
the average values of the total number of iterations, overall execution
time, and three levels of isotropic coding gains using each of the two
methods. Clearly, the coding gains of the optimal solutions obtained
by these two methods are essentially the same, while the SQP-based
method converges faster than the SOCP-based one in general.

Generally speaking, for a given lifting con guration, the SQP-
and SOCP-based methods achieve similar optimal solutions. The
SQP-based method usually converges with fewer iterations than the
SOCP one. Although the SQP-based method requires more com-
putation in each iteration, when assuming a small number of de-
composition levels (e.g., three or four), the overall execution time of
the SQP-based method is usually less than that of the SOCP-based
method.

6. IMAGE CODING RESULTS

To further demonstrate the effectiveness of our new lter banks, they
were employed in the embedded lossy/lossless image codec of [6].
For test data, 27 grayscale images from the JPEG-2000 test set were
used. These images were coded in a lossy manner at four com-
pression ratios and then decoded. The difference between the re-
constructed images and original images were measured in terms of
PSNR. Six and three levels of decomposition were employed in the
cases of the quincunx and separable lter banks, respectively.

Table 3 shows the percentage of cases where the SQP1 and SQP2
optimal designs outperform the KS, G62, and OPT1 lter banks,
which summarizes all of the lossy compression results for the 27 test
images at four compression ratios. We see that our new lter banks
SQP1 and SQP2 outperform KS and G62 in about 80% and 95% of
the cases, respectively. Furthermore, they also provide slightly better
performance than the OPT1 lter bank.

Table 4 shows some typical lossy compression results for an
isotropic image, namely for the finger (i.e., ngerprint) image.
Clearly, the optimal designs SQP1 and SQP2 perform very well,
consistently outperforming the KS and G62 quincunx lter banks
in all cases, and outperforming OPT1 in most cases. Moreover, our
designs achieve better results than the 9/7 lter bank in most cases.

Table 4. Lossy compression results for the finger image.
CR† PSNR (dB)

SQP1 SQP2 OPT1 KS G62 9/7
128 19.88 19.98 19.88 19.67 19.19 19.98
64 21.72 21.75 21.70 21.52 21.18 21.72
32 24.55 24.40 24.52 24.36 23.98 24.20
16 27.78 27.85 27.75 27.65 27.30 27.61

†compression ratio

This is quite an encouraging result, as the 9/7 lter bank is generally
held to be one of the very best in the literature.

7. CONCLUSIONS

In this paper, we showed how one can employ SQP to design quin-
cunx lter banks with PR, linear phase, high coding gain, good fre-
quency selectivity, and certain prescribed vanishing moments prop-
erties. New quincunx lter banks designed using this SQP-based
method were presented, and their effectiveness for image coding
was demonstrated through experimental results. The SQP-based de-
sign technique was compared to our previously proposed SOCP-
based method. The optimal solutions obtained by these two meth-
ods achieve comparable performance, while the SQP-based method
generally requires fewer iterations to converge. Moreover, for small-
sized design problems, the total execution time of the SQP-based
method is usually less than that of the SOCP-based technique.
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