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ABSTRACT

The paper presents an ef cient semide nite programming (SDP) based
design for prototype lters of cosine-modulated lter banks (CMFBs).
We consider a class of near-perfect reconstruction CMFBs with the
linear phase prototype lter, which structurally eliminates the am-
plitude overall distortion. The prototype lter design problem is
then formulated into a convex semi-in nite programming problem.
Furthermore, to handle the semi-in nite constraints, we use the lin-
ear matrix inequality (LMI) characterization of positive trigonomet-
ric polynomials to cast the semi-in nite programming problem into
SDP one. Finally, convex duality is applied to transform the SDP
into another SDP with the minimal number of additional variables,
which is ef ciently solved. An additional advantage of the proposed
method is that we can precisely control the lter speci cations.

Index Terms— cosine-modulated lter bank, semide nite pro-
gramming, linear matrix inequality.

1. INTRODUCTION

Multirate lter banks are used in a variety of applications from data
compression (speech, audio, image, and video) to communications
(multicarrier modulation), and feature detection [1], [2]. Fig.1 illus-
trates a typical M -channel maximally decimated lter bank, where
Hk(z) and Fk(z), 0 ≤ k ≤ M − 1 are analysis and synthesis l-
ters, respectively. The design of general M-channel lter banks is
very complicated. The reason is that a large number of parameters
and constraints are required to be handled. However, modulated l-
ter banks have been very attractive in practical applications due to
their ease of design and implementation. In CMFBs, all the analysis
and synthesis lters can be obtained by modulating the coef cient
values of one prototype lter, and hence, the design of the lter bank
reduces to that of the prototype lter. Moreover, there are ef cient
structures with fast transform for modulation implementation, so the
cost of the analysis lter bank is the cost of one lter plus modulation
overhead [1], [2].

The problem of designing the optimal prototype lter of CMFBs
has been extensively studied in [1], [2], [3]. A method that struc-
turally guarantees the perfect reconstruction property of the lter
bank is lattice factorization [2]. This method requires a good ini-
tial point to optimize angles in a cascade of lattices, and requires
solutions of highly nonlinear equations of the relations between the
angles and the lter coef cients. Some other design approaches of
the prototype are based on (local) nonlinear optimization [3], [4].
These methods can achieve lter banks with high stopband attenua-
tion, low aliasing and amplitude distortion. However, a good initial

lter is also required, and of course, the globally optimal solution
cannot guaranteed. There are some approaches that avoid nonlinear
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Fig. 1. M-channel maximally decimated lter bank.

optimization. For instance, the one presented in [5] is based on de-
signing the product lter and then spectral factorization to generate
the prototype lter. However, the resulting lter banks are not at
at ω = 0 and ω = π. Moreover, this method cannot be applied to
design linear phase prototype lters. Another method is to limit the
search of the prototype lters to the class of lters obtained using
Kaiser window [6], which obtained a high stopband attenuation l-
ter. However, the major disadvantage is the lack of control of the
edge frequencies and passband ripple. Like other classical lter de-
signs, the resulting lter usually has wide transition bandwidth.

In this paper, we show a class of cosine-modulated QMF banks
with a prototype lter which structurally cancels the overall ampli-
tude distortion. Then, the lter bank design problem boils down to
designing the prototype lter which has a frequency response sat-
isfying given speci cations. By applying LMI characterization of
positive trigonometric polynomials, the design problem is recast as
a convex SDP problem. Different from the conventional (local) non-
linear optimization based CMFB design, the SDP problem can be ef-
ciently solved, and more importantly, the globally optimal solution
can be obtained. In addition, our method has an additional advan-
tage that the tradeoff parameters are exibly chosen to control the
passband ripple and stopband attenuation, and hence, the stopband
attenuation of the analysis and synthesis lters, and reconstruction
error. The edge frequencies can also be controlled to obtain the lter
with narrow transition bandwidth.

Notations : Boldfaced characters denote matrices and column
vectors, with upper case used for the former and lower case for the
latter. The notation X ≥ 0 denotes a (symmetric) positive semi-
de nite matrix. The inner product 〈X,Y〉 between the matrices X
and Y is de ned as Trace(XY), i.e. 〈X,Y〉= Trace(XY). For a
given setC ⊂ R

N its convex hull (conic hull), denoted by conv(C)
(cone(C)), is the smallest convex set (cone) in R

N that containsC.
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2. PROBLEM FORMULATION

In the M-channel maximally decimated lter bank shown in Fig. 1,
the reconstructed signal X̂(z) is given by

X̂(z) = X(z)T0(z) +

M−1�
l=1

X(ze−j2πl/M )Tl(z) (1)

where

Tl(z) =
1

M

M−1�
k=0

Hk(ze
−j2πl/M )Fk(z).

Here, T0(z) is the overall distortion transfer function and Tl(z), l �=
0 is the aliasing transfer function. To cancel aliasing and achieve
perfect reconstruction, it is required that

Tl(z) = 0 for l = 1, 2, ...,M − 1
T0(z) = cz−nd , c �= 0, nd is positive integer.

(2)

In cosine-modulated QMF banks, all the analysis and synthesis l-
ters can be generated by just modulating a linear phase lowpass pro-
totype lterH(z) with cutoff frequency π

2M
as follows:

hk(n) = 2h(n) cos

�
π

M
(k + 0.5)(n− N

2
) + θk

�

fk(n) = 2h(n) cos

�
π

M
(k + 0.5)(n− N

2
)− θk

�

for 0 ≤ n ≤ N, 0 ≤ k ≤M − 1.
As the analysis and synthesis lters have narrow transition bands

and high stopband attenuation, the overlap between nonadjacent l-
ters is negligible. Moreover, it was shown in [3] that signi cant alias-
ing terms from the overlap of the adjacent lters are cancelled by
choosing θk = (−1)kπ/4. Under these circumstances, the overall
distortion function is given by

T0(e
jω) =

e−jωN

M

2M−1�
k=0

|H(ej(ω−kπ/M−π/2M))|2. (3)

It can be veri ed that T0(e
jω) is periodic with period π/M , and so

is approximated by

T0(e
jω) ≈e−jωN

M

�|H(ej(ω−kπ/M−π/2M))|2

+ |H(ej(ω−(k+1)π/M−π/2M))|2�,
(4)

for ω ∈ [(k + 1
2
) π
M
, (k + 3

2
) π
M
].

To eliminate amplitude distortion, |T0(e
jω)|must be constant for all

frequencies, i.e.,

|H(ej(ω−kπ/M−π/2M))|2 + |H(ej(ω−(k+1)π/M−π/2M))|2 = 1,

for ω ∈ [(k + 1
2
) π
M
, (k + 3

2
) π
M
], or, equivalently,

|H(ejω)|2 + |H(ej(ω−π/M))|2 = 1, (5)

for ω ∈ [0, π/M ].
Now, letH(ejω) be a lowpass lter with the passband and stopband
edges

ωp = (
π

2M
− ε), ωs = (

π

2M
+ ε) (6)

where 0 < ε < π/2M decides the transition bandwidth. Assuming
that the lter has small ripples in the passband and high attenuation
in the stopband, we have

|H(ejω)|2 + |H(ej(ω−π/M))|2 ≈ 1, (7)

for ω ∈ [0, ωp] ∪ [ωs, π/M ].
In the transition band, if

|H(ejω)| = cos
� π

4ε
(ω − ωp)

�
, ω ∈ [ωp, ωs], (8)

then

|H(ejω)|2 + |H(ej(ω−π/M))|2

= cos2
� π

4ε
(ω − ωp)

�
+ sin2

� π

4ε
(ω − ωp)

�
= 1

(9)

In summary, the overall amplitude distortion will be completely can-
celed if the prototype lter has the following magnitude response

|H(ejω)| =

�	

	�
1 ω ∈ [0, ωp],

cos
�

π
4ε
(ω − ωp)


ω ∈ [ωp, ωs],

0 ω ∈ [ωs, π].

(10)

For simplicity, we assume that the linear phase prototype lter have
even order, i.e., N = 2L. Then

H(ejω) = e−jωN/2HR(ω) (11)

and the amplitude response is

HR(ω) =

L�
k=0

gk cos(kω) = g
TϕL(ω) (12)

with ϕL(ω) = [1, cosω, cos 2ω, ..., cosLω]T and

g = [g0, g1, g2, ..., gL]
T = [hL, 2hL−1, 2hL−1, ..., 2h0]

T .

De ne the mean square error

Φ(g) =Wp

� ωp

0

|HR(ω)− 1|2 dω
π

+Wt

� ωs

ωp

|HR(ω)− cos
� π

4ε
(ω − ωp)

�
|2 dω

π

+Ws

� π

ωs

|HR(ω)|2 dω
π

(13)

whereWp+Wt+Ws = 1. Here,Wp,Wt,Ws are tradeoff parame-
ters among passband, transition band, and stopband performances. It
can be shown that Φ(g) is a convex quadratic function in g

Φ(g) = gTQg + gTq+ r, (14)

with a symmetric positive de nite matrixQ.
It is well known that the minimization of the mean square error

may not always lead the small peak errors. Therefore, the constraints
for the peak errors should be imposed.

|HR(ω)− 1| ≤ δp, ω ∈ [0, ωp],
|HR(ω)− cos

�
π
4ε
(ω − ωp)

 | ≤ δt, ω ∈ [ωp, ωs],
|HR(ω)| ≤ δs, ω ∈ [ωs, π].

(15)
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The lter bank design is now formulated as an optimization problem
of a convex objective subject to semi-in nite constraints

min
g

gTQg + gTq+ r (16)

subject to − δp ≤ gTϕL(ω)− 1 ≤ δp, ω ∈ [0, ωp]

−δt ≤ gTϕL(ω)− cos
�

π
4ε
(ω − ωp)

� ≤ δt, ω ∈ [ωp, ωs]
−δs ≤ gTϕL(ω) ≤ δs, ω ∈ [ωs, π].

The next section will show how to ef ciently handle these semi-
in nite constraints.

3. CONVERSION TO SDP

To express the above semi-in nite constraints by LMIs, we rst ex-
press the term cos

�
π
4ε
(ω − ωp)

�
by the Kth-order trigonometric

polynomial via interpolation:

cos
� π

4ε
(ω − ωp)

�
=

K�
i=0

ci cos(iω) (17)

where
�
��������

1 cosω0 ... cosKω0

1 cosω1 ... cosKω1

...
...

...
1 cosωK ... cosKωK

�
��������

�
��������

c0

c1

...
cK

�
��������

=

�
��������

cos
�

π
4ε
(ω0 − ωp)

�
cos

�
π
4ε
(ω1 − ωp)

�
...

cos
�

π
4ε
(ωK − ωp)

�

�
��������

ωi =
ωs − ωp

K
i+ ωp, i = 0, 1, ...,K.

De ne a trigonometric curve

Ca,b = {ϕL(ω) : cosω ∈ [cos a, cos b]} ⊂ R
L+1 (18)

and its polarC∗
a,b is given by

C∗
a,b =

�
u ∈ R

L+1 : 〈u,v〉 ≥ 0 ∀v ∈ Ca,b

�
. (19)

Then, the semi-in nite linear constraints in (16) are rewritten as

βig + di ∈ C∗
ai,bi

, i = 1, 2, ..., 6. (20)

where

[β1, β2, β3, β4, β5, β6] = [1,−1, 1,−1, 1,−1],
d1 = [δp − 1, 0, 0, ..., 0]T ,
d2 = [δp + 1, 0, 0, ..., 0]T ,
d3 = [δt − c0,−c1, ...,−cK , 0, ..., 0]T ,
d4 = [δt + c0, c1, ..., cK , 0, ..., 0]T ,
d5 = [δs, 0, 0, ..., 0]

T ,
d6 = [δs, 0, 0, ..., 0]

T ,

[a1, a2, a3, a4, a5, a6] = [ωp, ωp, ωs, ωs, π, π],

[b1, b2, b3, b4, b5, b6] = [0, 0, ωp, ωp, ωs, ωs].

Then, the optimization problem (16) can be expressed as

min
g

gTQg + gTq+ r

subject to βig + di ∈ C∗
ai,bi

, i = 1, 2, ..., 6.
(21)

It was shown in [7], [8] that each of constraints βig + di ∈ C∗
ai,bi

can be expressed as a set of linear equations and two LMI constraints

of two symmetric positive semide nite matrix variables. Therefore,
in addition to vector variable g ∈ R

L+1, the constraints in (21) intro-
duce 12 symmetric matrix variables of dimension roughly [L/2] ×
[L/2].

In order to reduce a number of additional variables, we employ
convex duality. We rst de nite Lagrangian function associated with
the problem (21):

L(g,yi) = g
TQg + qTg + r −

6�
i=1

(βig + di)
Tyi (22)

where vectors yi ∈ R
L+1 are dual variables. It means that yi ∈

(C∗
ai,bi

)∗. We also note that (C∗
ai,bi

)∗ = ((cone(Cai,bi))
∗)∗ =

cone(Cai,bi). The minimum of the Lagrangian over g is given by

D(yi) = min
g

L(g,yi) (23)

= −1

4

�
q−

6�
i=1

βiyi

�T

Q−1

�
q−

6�
i=1

βiyi

�

−
6�

i=1

di
Tyi + r.

Then the dual problem is given

max
yi

D(yi)

subject to yi ∈ cone(Cai,bi), i = 1, 2, ..., 6.
(24)

Using Schur’s complement [9], the optimization problem above can
be rewritten as

max
yi

−η −
6�

i=1

di
Tyi + r

subject to

�
�����

η (q−
6�

i=1

βiyi)
T

q−
6�

i=1

βiyi 4Q

�
����	 ≥ 0

yi ∈ cone(Cai,bi), i = 1, 2, ..., 6.

(25)

De ne the k − th moment trigonometric T k(ω):

T k(ω) = ϕk(ω)ϕ
T
k (ω) and T 1k(ω) = cosωT k(ω) (26)

and given a vector variable y = [y0, y1, ..., y2k+1]
T , a matrix func-

tion T1k(y) is created from T 1k(ω) by the change of variables

cos 
ω ← y�, 
 = 0, 1, ..., 2k + 1. (27)

The following theorem will show that yi ∈ cone(Cai,bi) are de-
scribed by LMIs.

Theorem 1 [7], [8] The conic hull cone(Ca,b) of the trigonometric
curve Ca,b is fully characterized by LMIs: y ∈ cone(Ca,b) if and
only if it satis es the LMIs

cos bT[L/2](y) ≥ T1[L/2](y) ≥ cos aT[L/2](y). (28)

The convex hull conv(Ca,b) of Ca,b is also fully characterized by
LMIs: y ∈ conv(Ca,b) if and only if it satis es the LMIs (28) with
y0 = 1.

Note that for L even, by the de nition,T1[L/2] is a matrix func-
tion of [y0, y1, ..., yL+1]

T and accordingly LMIs (28) are under-
stood for some yL+1.
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From the theorem 1, it is clear that each of constraints yi ∈
cone(Cai,bi) can be expressed by two LMI constraints with addi-
tional variables of dimension L + 1. Therefore, the total number of
scalar variables now is down to 6(L+1)+1. The optimization prob-
lem (25) is thus in a ready SDP form and its optimal solution can be
ef ciently computed by available SDP software packages. Then, the
globally optimal solution of the primal problem (21) is derived from
the solution of the dual one by

gopt = −1

2
Q−1

�
q−

6�
i=1

βiyiopt

�
. (29)

4. DESIGN EXAMPLE

In this section, an example is presented to illustrate the effectiveness
of the proposed method. The result is compared to that of another
method which is based on nonlinear optimization. A 17-channel
cosine modulated pseudo-QMF bank with the prototype lter order
N = 102 is designed. The other speci cations are ωp = 3.1176

10000
π,

ωs = 0.0585π, and peak passband ripple δp = 10−3, transition
band peak error δt = 10−3, peak stopband ripple δs = 10−2.
The magnitude responses of the optimized prototype lter H(ejω),
the corresponding analysis lters Hk(e

jω), the overall distortion
function M |T0(e

jω)| and the aliasing error function Ea(e
jω) =��M−1

l=1 |Tl(ejω)|2 are plotted in Fig.2, respectively. Note that
the stopband attenuation of H(ejω) and Hk(e

jω) is about −45dB.
The maximum peak to peak ripple ofM |T0(e

jω)|, denoted Epp, is
8.574e−03, and the maximum of the aliasing error,Ea = 2.856e−
04. The comparison of our result with that of nonlinear based method
in [2] is shown in Table 1. As expected, the transition width of the
designed lter by [2] is much wider than that settled by our method.
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Fig. 2. (a) Magnitude response of the optimized prototype H(ejω)
with N=102; (b) magnitude response plots for the analysis lters
Hk(e

jω); (c) magnitude response plot for the overall distortion
M |T (ejω)|; (d) magnitude response plot of aliasing error Ea(e

jω).

Table 1. Comparison between our method and the method in [2]

Method in [2] Our method
Filter order 101 102

Stopband attenuation (dB) 40.65 45
Stopband edge ωs 0.0590π 0.0585π

Reconstruction error Epp 6.790e− 03 8.574e− 03
Aliasing error Ea 3.794e− 04 2.856e− 04

5. CONCLUDING REMARKS

A new design approach for optimizing the prototype lter of CMFBs
was presented. The prototype lter design is formulated as a convex
SDP problem. Compared to the nonconvex nonlinear optimization
based designs in [2], which the resulting prototype lter is sensitive
to the initial lter, our method can be obtained the globally opti-
mal prototype lter. Compared to the method presented in [6], our
method has an additional advantage that it can totally control the l-
ter speci cations such as edge frequencies and peak ripples. In addi-
tion, the weights in our objective function can be used to control the
tradeoff between the passband ripple, and stopband attenuation, and
consequently, reconstruction error. Much more simulation is under
way to con rm the theoretical advantage of our method over other
existing ones.
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