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ABSTRACT

Encouraging recent results in compressed sensing or compressive
sampling suggest that a set of inner products with random measure-
ment vectors forms a good representation of a source vector that is
known to be sparse in some xed basis. With quantization of these
inner products, the encoding can be considered universal for sparse
signals with known sparsity level. We analyze the operational rate-
distortion performance of such source coding both with genie-aided
knowledge of the sparsity pattern and maximum likelihood estima-
tion of the sparsity pattern. We show that random measurements
induce an additive logarithmic rate penalty, i.e., at high rates the
performance with rate R + O(logR) and random measurements is
equal to the performance with rate R and deterministic measure-
ments matched to the source.

Index Terms— compressed sensing, eigenvalue distribution, ran-
dom matrices, quantization, subspace detection

1. INTRODUCTION AND OVERVIEW

It was recently discovered that when a signal obeys a sparsity or
compressibility model, “sensing” can be made blind to the source
distribution with remarkably little performance penalty—even while
keeping the reconstruction procedure tractable [1, 2]. This is now
commonly known as compressed sensing or compressive sampling.

Consider a signal x ∈ RL with x = Tu and u sparse or com-
pressible. The main ideas in compressed sensing are that

(a) transform coef cients in a random basis, z = Φx, where
Φ ∈ RN×L has an isotropic distribution, are almost as good
a representation of x as u; and

(b) the estimate from a convex optimization

x̂ = T · argminu :ΦTu=z ‖u‖1 (1)

is almost as good as the optimal estimate of x from z.

This paper focuses on the implications of using random measure-
ments and not on tractable estimation.

More precisely, an orthonormal transform T T is good for repre-
senting a deterministic vector x ∈ RL as u = T Tx when ‖u‖p =
(
∑
i |ui|p)1/p is small for some xed p ∈ (0, 1). The approximation

error from keeping only theK largest components of u satis es

‖x− x̂‖2 = ‖u− û‖2 ≤ ζp · ‖u‖p · (K + 1)1/2−1/p (2)

where ζp is a constant depending only on p [2]. So the decay with
increasing K gets faster as the smallest p such that ‖u‖p is small
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gets smaller. When ‖T Tx‖p is small for some p ∈ [0, 1], x is called
“compressible in the basis T .”

Compressed sensing exploits compressibility in the basis T even
if T is known only in the decoder, not in the encoder. The reconstruc-
tion procedure (1) gives an estimate with quality satisfying

‖x− x̂‖2 ≤ ξp · ‖T Tx‖p · (N/ log(L))1/2−1/p (3)

with probability approaching 1 as L → ∞. Comparing (2) and
(3), theN “random measurements” Φx give the same reconstruction
quality as N/ log(L) best transform coef cients. An intuitive case
(not quite covered by the same theory) is for the K best transform
coef cients to give an exact representation. Then the decoder (1)
recovers the signal exactly from O(K logL) measurements.

Compressed sensing is robust to noise in the measurements, in-
cluding quantization noise. This suggests to consider the scalar quan-
tization of z = Φx as a universal encoding of sparse or compressible
x [1]. This paper investigates universal encoding for x ∈ R

L that
is known to be K sparse in a xed basis—without constraints on
decoding complexity. We determine the optimal number of mea-
surements N for the case in which the sparsity pattern (positions of
nonzero coef cients) is provided to the decoder by a genie; even in
this case, the optimalN is strictly larger thanK. Then we determine
the minimumN that allows a maximum likelihood estimation of the
sparsity pattern to succeed with high probability.

2. BASIC NOTATION AND PRELIMINARY
CALCULATIONS

2.1. Sparse Signal Model

The signal to be compressed will be denoted by the vector x ∈ RL,
and is assumed to be of the form,

x = Tu, (4)

where T ∈ R
L×M and u ∈ R

M has at most K non-zero coef -
cients. The vector x is calledK-sparse with respect to T .

Since the signal x is a combination of at mostK of theM frame
vectors in T , x must belong to one of

(
M
K

)
subspaces. We will use

the following notation: Let J =
(
M
K

)
and enumerate the possible

subspaces for x by Sj where j = 1, . . . , J . Also, for each subspace
Sj , let Vj ∈ RL×K be a matrix whose columns form an orthonormal
basis for Sj . That is, V ′j Vj = IK and the range space of Vj is equal
Sj . With these de nitions, anyK-sparse signal x of the form (4) can
be written as

x = Vθw, (5)

where θ ∈ {1, . . . , J}, and w is a vector with w ∈ RK .
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For rate-distortion analysis, it is necessary to have a statistical
model for the sparse signal x. Instead of directly specifying the prob-
ability distribution on u, it will be convenient to describe x in terms
of the subspace model (5) as follows:

Assumption 1 The signal x ∈ RL is of the form (5), where

(a) the matrices V1, . . . , VJ are xed (i.e. deterministic) withVj ∈
R
L×K and V ′j VJ = IK for all j;

(b) the subspace index θ is uniformly distributed on the set {1, . . . , J};
and

(c) the vector w is Gaussian with mean zero and unit variance
IK . The vector w is independent of θ.

The model simply states that all the subspaces are equally likely
and that, given that x is on a subspace Sj , its conditional distribution
on the subspace is Gaussian.

2.2. Adaptive Quantization

The key motivation for compressed sensing is that the set of matrices
Vj need not be known at the encoder. The matrices need only be
known at the decoder. To evaluate the compressed sensing method,
it is useful to rst evaluate the performance of a simple baseline non-
universal compression scheme, where both the encoder and decoder
know the set of matrices Vj . We will call this adaptive quantization
since the encoder can “adapt” to the signal structure.

To analyze adaptive quantization, suppose that we have a total
of RK bits to quantize the vector x. Throughout this work, we will
let x̂ denote the best estimate for x at the decoder given the quan-
tized values from the encoder. We let D denote the corresponding
per-component average distortion, D = 1

K
E‖x − x̂‖2, where the

expectation is with respect to the signal model in Assumption 1.
First consider the case with J = 1. That is, the signal x be-

longs to a single K-dimensional subspace, known to the both the
encoder and decoder. In this case, the encoder is simply quantizing
a K-dimensional Gaussian random vector with RK bits. The re-
sulting minimal distortion is given by the well-known rate-distortion
formula for a Gaussian source,

Dadapt−genie(R) = 2
−2R. (6)

We have used the subscript “adapt-genie”, since the assumption that
J = 1 is equivalent to a “genie” telling the encoder and decoder
which subspace the true signal belongs to. That is, in the notation of
(5), the encoder and decoder know the subspace index θ.

Of course, for sparse signal encoding, the subspace index θ is
not known, in general, to the decoder. Since there are J possible
subspaces, the encoder can represent the subspace index by log2 J
bits. We will let

RV =
1
K
log2 J, (7)

which represents the rate to represent the subspace normalized by
signal dimension. We will call RV the subspace rate. If M → ∞
andK/M is constant, it can be veri ed that

limM→∞RV = limM→∞
1
K
log2

(
M
K

)
= M

K
h(K/M), (8)

where h(p) = −p log2 p− (1−p) log2(1−p) is the binary entropy.
Since it takes log2 J = KRV bits to represent the subspace

index, the remaining KR − KRV bits can be used to quantize the
Gaussian signal on the K-dimensional subspace. This results in the
distortion

Dadapt(R) =

{
2−2(R−RV ), R > RV ;
1, otherwise.

(9)
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Fig. 1. Compressed sensing encoding with optimal decoding

This is the distortion of the adaptive encoder and will serve as our
baseline to compare compressed sensing against.

3. COMPRESSED SENSING WITH QUANTIZATION

3.1. Encoder and Decoder Modeling Assumptions

We consider the compressed sensing encoder and decoder shown in
Fig. 1. Our modeling assumptions are summarized as follows:

• Signal model: The signal x ∈ R
L is modeled as a random

vector satisfying Assumption 1.

• Encoder linear transformation: The encoder rst applies a
random linear transformation Φ ∈ R

N×L to yield a vector
z = Φx ∈ R

N . We assume that K ≤ N ≤ L. The ratio
α = K/N will be called the sampling ratio. We will assume
that Φ is uniformly orthogonal in that it is a random matrix,
uniformly distributed on the set of matrices with ΦΦ′ = IN .

• Encoder quantization: The encoder quantizes the transformed
signal z to produce the quantized vector y = Q(z) ∈ R

N .
We will assume that the quantizer has a total of RK bits to
quantize the vector z ∈ R

N . Thus, R is the rate per sparse
signal dimension. To simplify the analysis, we will approxi-
mate the effect of the quantization with a simple linear addi-
tive noise model,

y = ρz + σvv, (10)

where ρ ∈ [0, 1] represents a linear gain, and v is additive
noise independent of z. We further assume that v is zero-
mean Gaussian with unit variance IN , and σv is a scaling
factor representing the quantization error variance. While this
model is not exact, it is widely-used in quantization analyses.
It can be made exact by assuming vector quantization across
instances.

• Decoder subspace detection: The decoder rst estimates the
subspace index θ in Assumption 1 with the estimate

θ̂ = argmaxj=1,...,J ‖Pjy‖, (11)

where Pj is the projection onto subspace Sj . That is, the
estimator simply selects the subspace with the maximum en-
ergy of the received signal. This is the ML estimate for the
subspace under the additive Gaussian noise model.

• Linear signal estimate: The decoder computes the nal esti-

mate with the conditional MMSE estimate x̂ = E
[
x | y, θ = θ̂

]
.

The key difference between this model and standard compressed
sensing is in the decoder: In the subspace detection step, the above
decoder may exhaustively search over all J possible subspaces. Since
J =

(
M
K

)
, this search grows exponentially with the problem dimen-

sion. Consequently, this decoder is not practical to implement. We
consider this exhaustive decoder since our interest is in determining
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an information theoretic limit of performance, rather than the perfor-
mance of a particular suboptimal decoder.

The parameters ρ and σv in (10) can be based on the quantizer
accuracy. One reasonable choice of the parameters is ρ = 1 − β,
σ2
v = β(1− β), where β is the relative quantization error

β = E‖z −Q(z)‖2/E‖z‖2. (12)

The relative quantizer accuracy β in (12) depends on the number of
bits of the quantizer and the speci c quantizer design. Since there
are RK bits to quantize the N -dimensional vector z, the quantizer
has RK/N bits per component. If we assume optimal vector quan-
tization, the relative accuracy is given by the well-known formula

β = 2−2KR/N = 2−2αR. (13)

3.2. Asymptotic Average Distortion

Given the assumptions in the previous section, we de ne the aver-
age per component distortion as DK = 1

K
E‖x − x̂‖2, where the

expectation is taken over the signal x, quantization noise v and ran-
dom encoding matrix Φ. To re ect the dependence on rate, we may
sometimes write DK(R) for DK . Our analyses will apply mostly
to large frames, and we will be mostly interested in the asymptotic
average distortion de ned as D(R) = limK→∞DK(R). In this
limit we assume that, as K → ∞, the ratios K/N and L/N along
with R and RV remain constant.

4. ANALYSIS FOR J = 1

When J = 1 the decoder effectively knows theK-dimensional sub-
space that the true signal x belongs to. Consequently, the situation
is equivalent to a “genie” telling the decoder the true subspace in-
dex θ. The performance of the genie-aided decoder is given by the
following result.

Theorem 1 Consider a random signal x ∈ R
L encoded and de-

coded as in Section 3.1. Assume that J = 1. Then the asymptotic
per component distortion is given by,

DCS−genie =
1
2

(−A+√A2 + 4B
)
, (14)

where A = (1− α)/α, B = β/(1− β), and α = K/N .

Theorem 1 provides a simple, explicit formula for the asymp-
totic distortion in terms of the sampling rate α and quantization
accuracy β. Due to space considerations, we will not include the
proof of the result. The basic idea is to express the MSE in terms of
the eigenvalues of a certain random matrix and apply the Marcenko-
Pastur asymptotic eigenvalue distribution.

Now, recall that the sampling ratio α = K/N is a design param-
eter for the system. It is interesting to nd the optimal value of α in
this “genie-aided” case. Assume that we employ optimal VQ, so that
the quantizer accuracy is given by β = 2−2αR. Then, DCS−genie
in (14) is strictly a function of α. De ne the minimum value by

DminCS−genie = min
α∈[0,1]

DCS−genie, (15)

and let αmin be the corresponding minimizing value of α. For large
R, it can be veri ed that αmin ≈ 1− 1/(2 log(2)R), and

DminCS−genie ≈ (2 log(2)R− 1)e2−2R ≈ 3.76R2−2R, (16)

where the second approximation occurs when 2 log(2)R 	 1. We
make the following observations:

• Comparing the minimum distortion in (16) of the genie-aided
decoder to the corresponding performance (6) of the adaptive
decoder, we see thatDminCS−genie ≈ 3.76RDadapt−genie(R).
The formula shows that, even if the compressed sensing de-
coder knows the true subspace, there is a multiplicative in-
crease in the distortion by a factor of approximately 3.76R at
high rates. The loss is a result of the random angle between
the K-dimensional subspace on which the signal lies and the
N -dimensional subspace the signal is projected to. We will
call this a rotational loss.

• We can rewrite (16) as

DminCS−genie ≈ 2−2(R−log
2
(3.76R)) = Dadapt−genie(Reff )

where Reff = R− log2(3.76R). Thus, compressed sensing
results in an additive loss in effective rate, where the additive
term log2(3.76R) grows logarithmically with the rate.

5. ANALYSIS FOR GENERAL J WITH RANDOM
SUBSPACES

5.1. Independent Subspace Signal Model

We now turn to the case of a general value of J . In this case, the
performance of the decoder depends on the speci c matrices Vj in
Assumption 1. Since it is dif cult to derive concrete results for a
general set of subspaces, we consider a simple model where the sub-
spaces are independent and uniformly orthogonal:

Assumption 2 The signal x ∈ RL satis es Assumption 1, where the
subspace matrices Vj ∈ RL×K are themselves random. Speci cally,
the matrices Vj are i.i.d. and uniformly orthogonal in that they are
uniformly distributed over the set of matrices with V ′j Vj = IK .

The assumption requires that the distribution of each of the J
subspaces Sj in Assumption 1 to be spherically symmetric. This
property will occur, for example, if the columns of the matrix T in
(4) are themselves i.i.d. and spherically symmetric. However, even
in this case, while one can construct uniformly orthogonal basis ma-
trices Vj for the J subspaces, the matrices will not, in general, be
independent. Indeed, in the model (4) many of the subspaces will
share common random frame vectors and will thus not be indepen-
dent. Consequently, the assumption in Assumption 2, represent an
approximation to the standard frame model.

5.2. Probability of Subspace Misdetection

Having described the signal model, we rst evaluate the subspace
detection performance. Consider the signal model and encoder and
decoder assumptions described in Section 3.1, and assume that the
signal x is generated from a set of uniformly orthogonal set of sub-
spaces as described in Assumption 2. De ne the asymptotic prob-

ability of subspace misdetection as Perr = limN→∞ Pr
(
θ̂ 
= θ

)
,

where the probability is with respect to the random signal x, the ran-
dom subspaces Vj , the random encoding matrix Φ and quantization
noise v. As in Section 3.2, the limit asN →∞ is taken withK/N ,
L/N , R and RV all constant. Under these assumptions, the asymp-
totic probability of error is given as follows:

Theorem 2 Let αcrit be the maximum value of α ∈ [0, 1] satisfying

− 1
2
log2(β) ≥ αRV + 1

2
α log2

(
1 + 1−β

αβ

)
. (17)
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Then, the asymptotic probability of subspace misdetection satis es

Perr =

{
1, α > αcrit;
0, α < αcrit,

(18)

where α = K/N .

The theorem shows that there is a critical sampling ratio, αcrit,
below which the ML subspace detection is guaranteed to work. That
is, as long as N > αcritK, the estimate for the subspace index θ̂
will equal the true subspace index θ with probability one. On the
other hand, ifN < αcritK, then the subspace detection will almost
surely fail. We again omit the proof, although the result is proven
similar to the style of [3].

When using optimal VQ, β = 2−2αR, and high rates R, it can
be easily veri ed that αcrit ≈ 1 − RV /R. In particular, as R →
∞, αcrit → 1 and K/N → 1. This can be contrasted with the
compressed sensing with 	1 decoding. The best known bounds for
compressed sensing with 	1 decoding require N = O(K logM).
Thus, as the problem dimension grows,K/N → 0.

5.3. Asymptotic Distortion

Suppose α is selected so that α < αcrit where αcrit is de ned in
Theorem 2. In this case, the theorem states that with probability ap-
proaching one the subspace detector will detect the correct subspace.
Consequently, the performance of the decoder with the subspace de-
tection will be identical to the “genie” decoder in Section 4 which
knew the subspace a priori. Thus, if we let DCS(α) be the asymp-
totic distortion of the compressed sensing decoder, we obtain

DCS(α) = DCS−genie(α) when α < αcrit.

Minimizing this distortion over all α ∈ αcrit, we obtain the mini-
mum distortion

DminCS = infα∈[0,αcrit]DCS−genie(α). (19)

We will let αmin be the corresponding minimizing value of α.
In the case when β = 2−2αR and R is large, we can explicitly

evaluate the minimum distortion. It turns out that

DminCS ≈ (
R
a
− 1) 2−2(R−a), (20)

where

a = max{RV , RminV }, RminV = 1/(2 log 2) ≈ 0.72. (21)

The minimizing sampling ratio αmin is given by αmin = 1− a/R.
We make the following comments:

• The minimum distortion shown in (20) and (21) has two re-
gions: (a) when the subspace rate, RV , is greater than a uni-
versal constant RminV , and (b) when RV < RminV .

• In the case when RV > RminV , a = RV and (20) reduces to

DminCS ≈
(
R
RV

− 1
)
2−2(R−RV ) ≈

(
R
RV

− 1
)
Dadapt(R),

whereDadapt(R) in the last step is given in (9). Thus, at high
rates R, compressed sensing with ML decoding increases the
distortion by a multiplicative factor R/RV − 1 over adap-
tive encoding. As in Section 4, this is equivalent to an addi-
tive penalty in rate of O(logR). This penalty is signi cantly
less than the multiplicative rate penalty in compressed sens-
ing with 	1 decoding.
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Fig. 2. Theoretical asymptotic performance of compressed sensing
(’CS’) and adaptive quantization (’Adapt’) of a sparse source with
two different subspace rates: RV = 2 and 4.6.

• When RV < RminV , a = RminV and it can be veri ed that

DminCS ≈
(

R
2 log(2)

− 1
)
e2−2R ≈ DminCS−genie.

Thus, when the number of subspaces is suf ciently small,
the compressed sensing decoder with ML detection performs
identically to the “genie-aided” decoder in Section 4. The
loss in performance in comparison to adaptive coding is due
to the rotational loss and not subspace misdetection.

To illustrate the above expressions, Fig. 2 plots the asymptotic
distortion for the adaptive and compressed sensing schemes as a
function of the quantization rate R for two values of the subspace
rate RV = 2 and 4.6. As in (8), the two values correspond to K/M
= 0.1 and 0.5, respectively. For the adaptive quantization, the dis-
tortion is given by D(R) = Dadapt in (9); for compressed sensing
D(R) = DminCS in (19). In both cases, the distortion is plotted as
the reconstruction SNR given by 10 log10(1/D(R)), where D(R)
is the convex lower bound to the distortion.

There is an increase in the reconstruction SNR with a lower sub-
space rateRV . This occurs since the adaptive encoder requires fewer
bits to encode the subspace index, and the CS encoder requires a
smaller number of samples N to detect the subspace at the decoder.

The loss in performance is compressed sensing is relatively small.
For example, even at a high rate of 10 bits per dimension, with
RV = 2, compressed sensing achieves a reconstruction SNR of
approximately 42 dB, while adaptive quantization achieves approx-
imately 48 dB. This is equivalent to a gap of a little more than 1
bit. For the higher number of subspaces, RV = 4.6, the gap is even
smaller: approximately 0.3 bits.
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